OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 7 — Mar. 1, 2013
  • pp: 1523–1530

Hybrid chaos-based communication system consisting of three chaotic semiconductor ring lasers

Nianqiang Li, Wei Pan, Shuiying Xiang, Bin Luo, Lianshan Yan, and Xihua Zou  »View Author Affiliations

Applied Optics, Vol. 52, Issue 7, pp. 1523-1530 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1133 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the realization of a hybrid chaos-based communication scheme using three chaotic semiconductor ring lasers (SRLs). In this scheme, two slave SRLs (S-SRLs) are identically driven by a master SRL (M-SRL) subject to delayed optical feedback. Under proper conditions, the S-SRLs are completely synchronized with each other due to the symmetric operation, and they are also synchronized with the M-SRL through the injection-locking effect. The results also show that a message encrypted through chaos shift keying at the M-SRL end can be successfully decrypted by the two S-SRLs, while the two uncoupled S-SRLs allow for dual-channel chaos communication when both counterpropagating modes of one S-SRL are encoded with a message.

© 2013 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(140.1540) Lasers and laser optics : Chaos
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 27, 2012
Revised Manuscript: February 1, 2013
Manuscript Accepted: February 1, 2013
Published: February 28, 2013

Nianqiang Li, Wei Pan, Shuiying Xiang, Bin Luo, Lianshan Yan, and Xihua Zou, "Hybrid chaos-based communication system consisting of three chaotic semiconductor ring lasers," Appl. Opt. 52, 1523-1530 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Donati and C. R. Mirasso, “Feature section on optical chaos and applications to cryptography,” IEEE J. Quantum Electron. 38, 1138–1140 (2002). [CrossRef]
  2. A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005). [CrossRef]
  3. R. M. Nguimdo and P. Colet, “Electro-optic phase chaos systems with an internal variable and a digital key,” Opt. Express 20, 25333–25344 (2012). [CrossRef]
  4. X. F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42, 953–960 (2006). [CrossRef]
  5. Q. C. Zhao, H. X. Yin, and X. L. Chen, “Long-haul dense wavelength division multiplexing between a chaotic optical secure channel and a conventional fiber-optic channel,” Appl. Opt. 51, 5585–5590 (2012). [CrossRef]
  6. S. Sivaprakasam and K. A. Shore, “Signal masking for chaotic optical communications using external-cavity diode lasers,” Opt. Lett. 24, 1200–1202 (1999). [CrossRef]
  7. V. Annovazzi-Lodi, S. Donati, and A. Scire, “Synchronization of chaotic injected-lasers systems and its applications to optical cryptography,” IEEE J. Quantum Electron. 32, 953–959 (1996). [CrossRef]
  8. V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, “Private message transmission by common driving of two chaotic lasers,” IEEE J. Quantum Electron. 46, 258–264 (2010). [CrossRef]
  9. N. Q. Li, W. Pan, L. S. Yan, B. Luo, M. F. Xu, Y. L. Tang, N. Jiang, S. Y. Xiang, and Q. Zhang, “Chaotic optical cryptographic communication using a three-semiconductor-laser scheme,” J. Opt. Soc. Am. B 29, 101–108 (2012). [CrossRef]
  10. J. Liu, Z. M. Wu, and G. Q. Xia, “Dual-channel chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection,” Opt. Express 17, 12619–12626 (2009). [CrossRef]
  11. N. Jiang, W. Pan, B. Luo, S. Y. Xiang, and L. Yang, “Bidirectional dual-channel communication based on polarization-division-multiplexed chaos synchronization in mutually coupled VCSELs,” IEEE Photon. Technol. Lett. 24, 1094–1096 (2012). [CrossRef]
  12. L. Chrostowski, and W. Shi, “Monolithic injection-locked high-speed semiconductor ring lasers,” J. Lightwave Technol. 26, 3355–3362 (2008). [CrossRef]
  13. S. T. Kingni, G. van der Sande, L. Gelens, T. Erneux, and J. Danckaert, “Direct modulation of semiconductor ring lasers: numerical and asymptotic analysis,” J. Opt. Soc. Am. B 29, 1983–1992 (2012). [CrossRef]
  14. R. M. Nguimdo, G. Verschaffelt, J. Danckaert, and G. van der Sande, “Loss of time-delay signature in chaotic semiconductor ring lasers,” Opt. Lett. 37, 2541–2543 (2012). [CrossRef]
  15. L. Gelens, S. Beri, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Exploring multistability in semiconductor ring lasers: theory and experiment,” Phys. Rev. Lett. 102, 193904 (2009). [CrossRef]
  16. T. Perez, A. Scire, G. Van der Sande, P. Colet, and C. R. Mirasso, “Bistability and all-optical switching in semiconductor ring lasers,” Opt. Express 15, 12941–12948 (2007). [CrossRef]
  17. S. Zimmermann, A. Wixforth, J. P. Kotthaus, W. Wegscheider, and M. Bichler, “A semiconductor-based photonic memory cell,” Science 283, 1292–1295 (1999). [CrossRef]
  18. M. T. Hill, H. J. S. Dorren, H. T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209 (2004). [CrossRef]
  19. S. Sunada, T. Harayama, K. Arai, K. Yoshimura, K. Tsuzuki, A. Uchida, and P. Davis, “Random optical pulse generation with bistable semiconductor ring lasers,” Opt. Express 19, 7439–7450 (2011). [CrossRef]
  20. R. M. Nguimdo, G. Verschaffelt, J. Danckaert, X. Leijtens, J. Bolk, and G. Van der Sande, “Fast random bits generation based on a single chaotic semiconductor ring laser,” Opt. Express 20, 28603–28613 (2012). [CrossRef]
  21. L. Mashal, G. van der Sande, L. Gelens, J. Danckaert, and G. Verschaffelt, “Square-wave oscillations in semiconductor ring lasers with delayed optical feedback,” Opt. Express 20, 22503–22516 (2012). [CrossRef]
  22. I. V. Ermakov, G. van der Sande, and J. Danckaert, “Semiconductor ring laser subject to delayed optical feedback: bifurcations and stability,” Commun. Nonlinear Sci. Numer. Simul. 17, 4767–4779 (2012). [CrossRef]
  23. I. V. Ermakov, S. T. Kingni, V. Z. Tronciu, and J. Danckaert, “Chaotic semiconductor ring lasers subject to optical feedback: applications to chaos-based communications,” Opt. Commun. 286, 265–272 (2013). [CrossRef]
  24. N. Q. Li, W. Pan, L. S. Yan, B. Luo, X. H. Zou, and S. Y. Xiang, “Enhanced two-channel optical chaotic communication using isochronous synchronization,” IEEE J. Sel. Top. Quantum Electron., doi:10.1109/JSTQE.2012.2210394 (2012). [CrossRef]
  25. R. Ju, P. S. Spencer, and K. A. Shore, “Polarization-preserved and polarization-rotated synchronization of chaotic vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 1461–1467 (2005). [CrossRef]
  26. A. Locquet, C. Masoller, and C. R. Mirasso, “Synchronization regimes of optical-feedback-induces chaos in unidirectionally coupled semiconductor lasers,” Phys. Rev. E 65, 056205 (2002). [CrossRef]
  27. S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Jiang, N. Q. Li, and H. N. Zhu, “Message encoding/decoding using unpredictability-enhanced chaotic VCSELs,” IEEE Photon. Technol. Lett. 24, 1267–1269 (2012). [CrossRef]
  28. N. Q. Li, W. Pan, B. Luo, L. S. Yan, X. H. Zou, and S. Y. Xiang, “Multiuser optical communication system based on generalized and complete synchronization,” Optik, doi:10.1016/j.ijleo.2012.09.008 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited