OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 7 — Mar. 1, 2013
  • pp: 1531–1540

Resonance domain surface relief diffractive lens for the visible spectral region

Omri Barlev and Michael A. Golub  »View Author Affiliations


Applied Optics, Vol. 52, Issue 7, pp. 1531-1540 (2013)
http://dx.doi.org/10.1364/AO.52.001531


View Full Text Article

Enhanced HTML    Acrobat PDF (1457 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Early expectations for a role of diffractive lenses were dramatically lessened by their high order overlapping foci, low optical powers, and competing advances in refractive micro-optics. By bringing the Bragg properties of volume holograms to diffractive lenses we got rid of ghost diffractive orders and the critical trade-off between diffraction efficiency, number of phase levels, and spatial feature-size. Binary off-axis resonance domain diffractive lens with high numerical aperture of 0.16 was designed with analytical effective grating theory, fabricated by direct e-beam writing, etched in fused silica and experimentally investigated. More than 81% measured diffraction efficiency exceeds twice the limits of thin binary optics.

© 2013 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1970) Diffraction and gratings : Diffractive optics
(090.0090) Holography : Holography
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 31, 2012
Revised Manuscript: January 2, 2013
Manuscript Accepted: February 4, 2013
Published: February 28, 2013

Citation
Omri Barlev and Michael A. Golub, "Resonance domain surface relief diffractive lens for the visible spectral region," Appl. Opt. 52, 1531-1540 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-7-1531


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Rossi, R. E. Kunz, and H. P. Herzig, “Refractive and diffractive properties of planar micro-optical elements,” Appl. Opt. 34, 5996–6007 (1995). [CrossRef]
  2. H. P. Herzig, “Design of refractive and diffractive micro-optics,” Micro-Optics Elements, Systems and Applications, H. P. Herzig, ed. (CRC, Taylor & Francis, 1998), pp. 1–52.
  3. H. Zappe, Fundamentals of Micro-Optics (Cambridge University, 2010).
  4. H. Zappe, “Micro-optics: a micro-tutorial,” Adv. Opt. Tech. 1, 117–126 (2012). [CrossRef]
  5. R. Voelkel, “Wafer-scale micro-optics fabrication,” Adv. Opt. Tech. 1, 117–126 (2012). [CrossRef]
  6. M. Rossi, G. L. Bona, and R. E. Kunz, “Arrays of anamorphic phase-matched Fresnel elements for diode-to-fiber coupling,” Appl. Opt. 34, 2483–2488 (1995). [CrossRef]
  7. M. Kuittinen and H. P. Herzig, “Encoding of efficient diffractive microlenses,” Opt. Lett. 20, 2156–2158 (1995). [CrossRef]
  8. P. Lalanne, S. Astilean, and P. Chavel, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16, 1143–1156 (1999). [CrossRef]
  9. J. N. Mait, D. W. Prather, and M. S. Mirotznik, “Design of binary subwavelength diffractive lenses by use of zeroth-order effective-medium theory,” J. Opt. Soc. Am. A 16, 1157–1167 (1999). [CrossRef]
  10. J. N. Mait, A. Scherer, O. Dial, D. W. Prather, and X. Gao, “Diffractive lens fabricated with binary features less than 60 nm,” Opt. Lett. 25, 381–383 (2000). [CrossRef]
  11. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010). [CrossRef]
  12. L. Chrostowski, “Nano-engineered lenses,” Nat. Photonics 4, 413–415 (2010). [CrossRef]
  13. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2003).
  14. J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (John Wiley & Sons, 1998).
  15. B. Kress and P. Meyrueis, Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology (John Wiley & Sons, 2000).
  16. V. A. Soifer, ed., Methods for Computer Design of Diffractive Optical Elements, Wiley Series in Lasers and Applications (John Wiley & Sons, 2001).
  17. V. A. Soifer and M. A. Golub, Laser Beam Mode Selection by Computer Generated Holograms (CRC, 1994).
  18. B. Kress and P. Meyrueis, Applied Digital Optics: From Micro-optics to Nanophotonics (John Wiley & Sons, 2009).
  19. F. M. Dickey and S. C. Holswade, Laser Beam Shaping Theory and Technologies (Marcel Dekker, 2000).
  20. E. Noponen and J. Turunen, “Complex-amplitude modulation by high-carrier-frequency diffractive elements,” J. Opt. Soc. Am. A 13, 1422–1428 (1996). [CrossRef]
  21. M. A. Golub, “Generalized conversion from the phase function to the blazed surface-relief profile of diffractive optical elements,” J. Opt. Soc. Am. A 16, 1194–1201 (1999). [CrossRef]
  22. A. Schilling and H. P. Herzig, “Phase function encoding of diffractive structures,” Appl. Opt. 39, 5273–5279 (2000). [CrossRef]
  23. E. Noponen, J. Turunen, and A. Vasara, “Electromagnetic theory and design of diffractive-lens arrays,” J. Opt. Soc. Am. A 10, 434–443 (1993). [CrossRef]
  24. Y. Sheng, D. Feng, and S. Larochelle, “Analysis and synthesis of circular diffractive lens with local linear grating model and rigorous coupled-wave theory,” J. Opt. Soc. Am. A 14, 1562–1568 (1997). [CrossRef]
  25. D. W. Prather, M. S. Mirotznik, and J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
  26. Y. Sheng, D. Feng, and S. Larochelle, “Analysis and synthesis of circular diffractive lens with local linear grating model and rigorous coupled-wave theory,” J. Opt. Soc. Am. A 14, 1562–1568 (1997). [CrossRef]
  27. Y. Elias, N. Glytsis, Michael E. Harrigan, Koichi Hirayama, and Thomas K. Gaylord, “Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation,” Appl. Opt. 37, 34–43 (1998). [CrossRef]
  28. D. W. Prather, M. S. Mirotznik, J. N. Mait, and J. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998). [CrossRef]
  29. D. W. Prather, S. Shi, and J. S. Bergey, “Field stitching algorithm for the analysis of electrically large diffractive optical elements,” Opt. Lett. 24, 273–275 (1999). [CrossRef]
  30. J. Turunen, M. Kuittinen, and F. Wyrowski, “Diffractive optics: electromagnetic approach,” in Progress in Optics V. XL, E. Wolf, ed., (Elsevier Science B. V., 2000), pp. 343–388.
  31. S. Shi and D. W. Prather, “Electromagnetic analysis of axially symmetric diffractive optical elements illuminated by oblique incident plane waves,” J. Opt. Soc. Am. A 18, 2901–2907 (2001). [CrossRef]
  32. F. Di, Y. Yingbai, J. Guofan, and W. Minxian, “Rigorous concept for the analysis of diffractive lenses with different axial resolution and high lateral resolution,” Opt. Express 11, 1987–1994 (2003). [CrossRef]
  33. H. Ichikawa, K. Masuda, and T. Ueda, “Analysis of micro-Fresnel lenses with local grating theory and its comparison with fully electromagnetic methods,” J. Opt. Soc. Am. A 26, 1938–1944 (2009). [CrossRef]
  34. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969). [CrossRef]
  35. J. A. Jordan, P. M. Hirsch, L. B. Lesem, and D. L. Van Rooy, “Kinoform lenses,” Appl. Opt. 9, 1883–1887 (1970). [CrossRef]
  36. R. J. Collier, Optical Holography (Academic, 1971).
  37. T. D. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics 4, 188–193 (2010). [CrossRef]
  38. M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Bragg regime diffraction by phase gratings,” Opt. Commun. 32, 14–18 (1980). [CrossRef]
  39. K. Yokomori, “Dielectric surface-relief gratings with high diffraction efficiency,” Appl. Opt. 23, 2303–2310 (1984). [CrossRef]
  40. Z. Peng and G. M. Morris, “Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings,” J. Opt. Soc. Am. A 12, 1087–1096 (1995). [CrossRef]
  41. E. Popov and E. G. Loewen, Diffraction Gratings and Applications (Marcel Dekker, 1997). Chap. 4, section 4.2.3.
  42. J. M. Miller, N. Beaucoudrey, P. Chavel, J. Turunen, and E. Cambril, “Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection,” Appl. Opt. 36, 5717–5727 (1997). [CrossRef]
  43. L. Li, J. Chandezon, G. Granet, and J.-P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304–313 (1999). [CrossRef]
  44. T. Shiono, T. Hamamoto, and K. Takahara, “High-efficiency blazed diffractive optical elements for the violet wavelength fabricated by electron-beam lithography,” Appl. Opt. 41, 2390–2393 (2002). [CrossRef]
  45. T. Clausnitzer, J. Limpert, K. Zoellner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tunnermann, M. Jupe, and D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,” Appl. Opt. 42, 6934–6938 (2003). [CrossRef]
  46. M. Okano, H. Kikuta, Y. Hirai, K. Yamamoto, and T. Yotsuya, “Optimization of diffraction grating profiles in fabrication by electron-beam lithography,” Appl. Opt. 43, 5137–5142 (2004). [CrossRef]
  47. M. A. Golub and A. A. Friesem, “Analytical theory for efficient surface relief gratings in the resonance domain,” in The Art and Science of Holography: A Tribute to Emmett Leith and Yuri Denisyuk, H. John Caulfield, ed. (SPIE, 2004) Chap. 19, pp. 307–328.
  48. M. A. Golub, A. A. Friesem, and L. Eisen, “Bragg properties of efficient surface relief gratings in the resonance domain,” Opt. Commun. 235, 261–267 (2004). [CrossRef]
  49. M. A. Golub and A. A. Friesem, “Effective grating theory for the resonance domain surface relief diffraction gratings,” J. Opt. Soc. Am. A 22, 1115–1126 (2005). [CrossRef]
  50. M. A. Golub and A. A. Friesem, “Analytic design and solutions for resonance domain diffractive optical elements,” J. Opt. Soc. Am. A 24, 687–695 (2007). [CrossRef]
  51. N. Destouches, A. V. Tishchenko, J. C. Pommier, S. Reynaud, and O. Parriaux, “99% efficiency measured in the 1st order of a resonant grating,” Opt. Express 13, 3230–3235 (2005). [CrossRef]
  52. S. D. Wu, T. K. Gaylord, E. N. Glytsis, and Y. M. Wu, “Angular sensitivities of volume gratings for substrate-mode optical interconnects,” Appl. Opt. 44, 4447–4453 (2005). [CrossRef]
  53. B. Wang, C. Zhou, S. Wang, and J. Feng, “Polarizing beam splitter of a deep-etched fused-silica grating,” Opt. Lett. 32, 1299–1301 (2007). [CrossRef]
  54. T. Clausnitzer, T. Kampfe, E. B. Kley, A. Tunnermann, A. V. Tishchenko, and O. Parriaux, “High-dispersive dielectric transmission grating with 100% diffraction efficiency,” Opt. Express 16, 5577–5584 (2008). [CrossRef]
  55. K. Ventola, J. Tervo, P. Laakkonen, and M. Kuittinen, “High phase retardation by waveguiding in slanted photonic nanostructures,” Opt. Express 19, 241–246 (2011). [CrossRef]
  56. H. Cao, C. Zhou, J. Feng, P. Lu, and J. Ma, “Design and fabrication of a polarization-independent wideband transmission fused-silica grating,” Appl. Opt. 49, 4108–4112 (2010). [CrossRef]
  57. O. Sandfuchs, C. Schwanke, M. Burkhardt, F. Wyrowski, A. Gatto, and R. Brunner, “Modelling adapted to manufacturing aspects of holographic grating structures,” J. Eur. Opt. Soc. 6, 11006 (2011). [CrossRef]
  58. M. Oliva, T. Harzendorf, D. Michaelis, U. D. Zeitner, and A. Tünnermann, “Multilevel blazed gratings in resonance domain: an alternative to the classical fabrication approach,” Opt. Express 19, 14735–14745 (2011). [CrossRef]
  59. K. Ventola, J. Tervo, S. Siitonen, H. Tuovinen, and M. Kuittinen, “High efficiency half-wave retardation in diffracted light by coupled waves,” Opt. Express 20, 4681–4689 (2012). [CrossRef]
  60. O. Barlev, M. A. Golub, A. A. Friesem, D. Mahalu, and M. Nathan, “Fabrication and testing of highly efficient resonance domain diffractive optical elements,” Proc. SPIE 8169, 81690D (2011). [CrossRef]
  61. O. Barlev, M. A. Golub, and A. A. Friesem, “Design and experimental investigation of highly efficient resonance domain diffraction gratings in the visible spectral region,” Appl. Opt. 51, 8074–8080 (2012). [CrossRef]
  62. O. Barlev, M. A. Golub, A. A. Friesem, D. Mahalu, and M. Nathan, “Fabrication of high-aspect-ratio resonance domain diffraction grating in fused silica,” Opt. Eng. 51, 118002 (2012). [CrossRef]
  63. DiffractMODTM software code, Rsoft Design Group, www.rsoftdesign.com .
  64. Ionline software code, Raith gmbh, http://www.raith.com/ .
  65. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited