OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 7 — Mar. 1, 2013
  • pp: C64–C71

Rapid multiexposure in vivo brain imaging system using vertical cavity surface emitting lasers as a light source

Yaaseen Atchia, Hart Levy, Suzie Dufour, and Ofer Levi  »View Author Affiliations


Applied Optics, Vol. 52, Issue 7, pp. C64-C71 (2013)
http://dx.doi.org/10.1364/AO.52.000C64


View Full Text Article

Enhanced HTML    Acrobat PDF (838 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an imaging technique implementing vertical cavity lasers with extremely low transient times for a greatly simplified realization of a multiexposure laser speckle contrast imaging system. Data from multiexposure laser speckle imaging was observed to more closely agree with absolute velocity measurements using time of flight technique, when compared to long-exposure laser speckle imaging. Furthermore, additional depth information of the vasculature morphology was inferred by accounting for the change in the static scattering from tissue above vessels with respect to the total scattering from blood flow and tissue.

© 2013 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(110.6150) Imaging systems : Speckle imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging

History
Original Manuscript: October 15, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: December 23, 2012
Published: February 11, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Yaaseen Atchia, Hart Levy, Suzie Dufour, and Ofer Levi, "Rapid multiexposure in vivo brain imaging system using vertical cavity surface emitting lasers as a light source," Appl. Opt. 52, C64-C71 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-7-C64


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Jones, H. Shin, D. Boas, B. Hyman, M. Moskowitz, C. Ayata, and A. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13, 044007 (2008). [CrossRef]
  2. Z. Luo, Z. Yuan, Y. Pan, and C. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett. 34, 1480–1482 (2009). [CrossRef]
  3. A. Dunn, A. Devor, H. Bolay, M. Andermann, M. Moskowitz, A. Dale, and D. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003). [CrossRef]
  4. H. Levy, D. Ringuette, and O. Levi, “Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow,” Biomed. Opt. Express 3, 777–791 (2012). [CrossRef]
  5. A. Devor, I. Ulbert, A. Dunn, S. Narayanan, S. Jones, M. Andermann, D. Boas, and A. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. USA 102, 3822–3827(2005). [CrossRef]
  6. F. Di Salle, E. Formisano, D. Linden, R. Goebel, S. Bonavita, A. Pepino, F. Smaltino, and G. Tedeschi, “Exploring brain function with magnetic resonance imaging,” Eur. J. Radiol. 30, 84–94 (1999). [CrossRef]
  7. K. Ghosh, L. Burns, E. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8, 871–878 (2011). [CrossRef]
  8. P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011). [CrossRef]
  9. J. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976). [CrossRef]
  10. A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981). [CrossRef]
  11. D. Boas and A. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010). [CrossRef]
  12. J. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16, 3197–3203 (2008). [CrossRef]
  13. A. Parthasarathy, W. Tom, A. Gopal, X. Zhang, and A. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16, 1975–1989 (2008). [CrossRef]
  14. A. Parthasarathy, S. Kazmi, and A. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with multi-exposure speckle imaging,” Biomed. Opt. Express 1, 246–259 (2010). [CrossRef]
  15. M. Bouchard, B. Chen, S. Burgess, and E. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17, 15670–15678 (2009). [CrossRef]
  16. R. Michalzik and K. Ebeling, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2002) p. 53.
  17. Y. Atchia, H. Levy, and O. Levi, “Deviations in long exposure laser speckle contrast imaging: accounting for static scatterers,” in Applied Industrial Optics: Spectroscopy, Imaging and Metrology (Optical Society of America, 2012).
  18. D. Duncan, S. Kirkpatrick, and J. Gladish, “What is the proper statistical model for laser speckle flowmetry,” Proc. SPIE 6855, 685502 (2008). [CrossRef]
  19. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2011) p. 552.
  20. E. Munro, H. Levy, D. Ringuette, T. O’Sullivan, and O. Levi, “Multimodality optical neural imaging using coherence control of VCSELs,” Opt. Express 19, 10747–10761 (2011). [CrossRef]
  21. O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16, 016009 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited