OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 7 — Mar. 1, 2013
  • pp: C72–C77

Pixel scaling in infrared focal plane arrays

Peter B. Catrysse and Torbjorn Skauli  »View Author Affiliations

Applied Optics, Vol. 52, Issue 7, pp. C72-C77 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (506 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss effects that arise in pixels of IR focal plane arrays (FPAs) when pixel size scales down to approach the wavelength of the incident radiation. To study these effects, we perform first-principles electromagnetic simulations of pixel structures based on a mercury–cadmium–telluride photoconductor for use in FPAs. Specifically, we calculate the pixel quantum efficiency and crosstalk as pixel size scales from 16 μm, which is in the range of current detectors, down to 0.75 μm, corresponding to subwavelength detectors. Our numerical results indicate the possibility of wavelength-size (4μm) and even subwavelength-size (1μm) pixels for IR FPAs. In addition, we explore opportunities that emerge for controlling light with subwavelength structures inside FPA pixels. As an illustration, we find that the low-pass filtering effect of a metal film aperture can exemplify the impact and the possible role that wavelength-scale optics plays in very small pixels.

© 2013 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(110.0110) Imaging systems : Imaging systems
(110.3080) Imaging systems : Infrared imaging
(050.6624) Diffraction and gratings : Subwavelength structures

Original Manuscript: January 2, 2013
Revised Manuscript: January 22, 2013
Manuscript Accepted: January 23, 2013
Published: February 18, 2013

Peter B. Catrysse and Torbjorn Skauli, "Pixel scaling in infrared focal plane arrays," Appl. Opt. 52, C72-C77 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. F. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006). [CrossRef]
  2. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008). [CrossRef]
  3. L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009). [CrossRef]
  4. C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011). [CrossRef]
  5. H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, “CMOS imager technology shrinks and image performance,” in IEEE Workshop on Microelectronics and Electron Devices (IEEE, 2004), pp. 7–18.
  6. P. B. Catrysse and B. A. Wandell, “Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld,” Proc. SPIE 5678, 1–13 (2005). [CrossRef]
  7. P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18 μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A 20, 2293–2306 (2003). [CrossRef]
  8. P. B. Catrysse, W. J. Suh, S. H. Fan, and M. Peeters, “One-mode model for patterned metal layers inside integrated color pixels,” Opt. Lett. 29, 974–976 (2004). [CrossRef]
  9. C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Optical confinement methods for continued scaling of CMOS image sensor pixels,” Opt. Express 16, 20457–20470 (2008). [CrossRef]
  10. C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Effects of imaging lens f-number on sub-2 μm CMOS image sensor pixel performance,” Proc. SPIE 7250, 72500G (2009). [CrossRef]
  11. Y. J. Huo, C. C. Fesenmaier, and P. B. Catrysse, “Microlens performance limits in sub-2 μm pixel CMOS image sensors,” Opt. Express 18, 5861–5872 (2010). [CrossRef]
  12. R. Singh and V. Mittal, “Mercury cadmium telluride photoconductive long wave infrared linear array detectors,” Def. Sci. J. 53, 281–324 (2003).
  13. A. Rogalski, J. Antoszewski, and L. J. Faraone, “Third-generation infrared photodetector arrays,” Appl. Phys. 105, 091101 (2009). [CrossRef]
  14. P. B. Catrysse and B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. A 19, 1610–1620(2002). [CrossRef]
  15. G. Veronis and S. Fan, “Overview of simulation techniques for plasmonic devices,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. Kik, eds. (Springer, 2007), Vol. 131, p. 169.
  16. W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” J. Comput. Phys. 231, 3406–3431 (2012). [CrossRef]
  17. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).
  18. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (corrected) (Pergamon, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited