OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 7 — Mar. 1, 2013
  • pp: C78–C87

Calibration of a digital in-line holographic microscopy system: depth of focus and bioprocess analysis

James P. Ryle, Susan McDonnell, Brian Glennon, and John T. Sheridan  »View Author Affiliations


Applied Optics, Vol. 52, Issue 7, pp. C78-C87 (2013)
http://dx.doi.org/10.1364/AO.52.000C78


View Full Text Article

Enhanced HTML    Acrobat PDF (2546 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Digital in-line holographic microscopy (DIHM) allows access to both intensity and phase information with conventional microscopic lateral resolutions. Such imaging techniques can, however, be used to increase the depth of focus compared to conventional compound microscopes. We present a simple DIHM capable of imaging weakly scattering 10 μm diameter microspheres as well as Hs578T cells over a depth of 1 mm; i.e., we demonstrate an increase by a factor of 100 over the depth of focus of a conventional microscope.

© 2013 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.1995) Holography : Digital holography
(110.3010) Imaging systems : Image reconstruction techniques

History
Original Manuscript: October 26, 2012
Revised Manuscript: January 24, 2013
Manuscript Accepted: January 25, 2013
Published: February 25, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
James P. Ryle, Susan McDonnell, Brian Glennon, and John T. Sheridan, "Calibration of a digital in-line holographic microscopy system: depth of focus and bioprocess analysis," Appl. Opt. 52, C78-C87 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-7-C78


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Tjio and T. T. Puck, “Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture,” J. Exp. Med. 108, 259–268 (1958). [CrossRef]
  2. I. A. MacPherson and M. G. P. Stoker, “Polyoma transformation of hamster cell lines-an investigation of genetic factor affecting cell competence,” Virology 16, 147–151 (1962). [CrossRef]
  3. M. Potter and C. R. Boyce, “Induction of plasma cell neoplasma in strain BALB/c mice with mineral oil and mineral oil adjuvants,” Nature 193, 1086–1087 (1962). [CrossRef]
  4. Wyeth, www.wyeth.com , retrieved July 2009.
  5. Genentec, www.gene.com , retrieved July 2009.
  6. Amgen, www.amgen.com , retrieved July 2009.
  7. M. Wurm, “Production of recombinant protein therapeutics in cultivated mammalian cells,” Nat. Biotechnol. 22, 1393–1398 (2004). [CrossRef]
  8. G. Rudolph, P. Lindner, A. Bluma, K. Joeris, G. Martinez, B. Hitzmann, and T. Scheper, “Optical in-line measurement procedures for counting and sizing cells in bioprocess technology,” Adv. Biochem. Eng. Biotechnol. 116, 125–142 (2009). [CrossRef]
  9. N. Wei, E. Flaschel, K. Friehs, and T. W. Nattkemper, “A machine vision system for automated noninvasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification,” BMC Bioinf. 9, 499 (2008). [CrossRef]
  10. J. S. Guez, J. P. Cassar, F. Artelle, P. Dhulster, and H. Suhr, “The viability of animal cell cultures in bioreactors: can it be estimated online by using in-situ microscopy?” Process Biochem. 45, 288–291 (2010). [CrossRef]
  11. Focus Beam Reflectance Measurement system, www.mt.com/FBRM , retrieved September 2010.
  12. Particle Vision Measurement system, www.mt.com/PVM , retrieved September 2010.
  13. M. Minsky, Microscopy Apparatus, U. S. Patent 3,013,467(19December1961).
  14. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  15. T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1  frame/ms scanning confocal microscope with a microlens and nipkow disks,” Appl. Opt. 41, 4704–4708 (2002). [CrossRef]
  16. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef]
  17. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006). [CrossRef]
  18. P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009). [CrossRef]
  19. T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett. 35, 1840–1842 (2010). [CrossRef]
  20. J. P. Ryle, S. McDonnell, and J. T. Sheridan, “Lensless multispectral digital in-line holographic microscope,” J. Biomed. Opt. 16, 126004 (2011). [CrossRef]
  21. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948). [CrossRef]
  22. R. R. A. Syms, Practical Volume Holography (Oxford University, 1990).
  23. M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Analysis of the holographic performance of a commercially available photopolymer using the NPDD model,” Opt. Express 19, 26325–26342 (2011). [CrossRef]
  24. P. F. MacLoughlin, “A Holographic Study of Interacting Liquid,” Ph. D. Sprays dissertation (University College Dublin, 1976).
  25. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967). [CrossRef]
  26. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef]
  27. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef]
  28. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29, 1787–1789 (2004). [CrossRef]
  29. G. Situ, J. P. Ryle, U. Gopinathan, and J. T. Sheridan, “Generalized in-line digital holographic technique based on intensity measurements at two different planes,” Appl. Opt. 47, 711–717 (2008). [CrossRef]
  30. Q. Lü, Y. Chen, R. Yuan, B. Ge, Y. Gao, and Y. Zhang, “Trajectory and velocity measurement of a particle in spray by digital holography,” Appl. Opt. 48, 7000–7007 (2009). [CrossRef]
  31. A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. Gjörloff Wingren, and K. Alm, “Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography,” J. Microsc. 232, 240–247 (2008). [CrossRef]
  32. J. P. Ryle, K. M. Molony, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Multispectral lensless digital holographic microscope: imaging MCF-7 and MDA-MB-231 cancer cell cultures,” Proc. SPIE 7442, 744206 (2009). [CrossRef]
  33. J. P. Ryle, D. Li, and J. T. Sheridan, “Dual wavelength digital holographic Laplacian reconstruction,” Opt. Lett. 35, 3018–3020 (2010). [CrossRef]
  34. J. P. Ryle, D. Li, and J. T. Sheridan, “Feasibility investigation of using tunable infrared communications laser for multiwavelength digital holographic Laplacian reconstruction,” Opt. Eng. 50, 105801 (2011). [CrossRef]
  35. S. S. Kou and C. J. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express 15, 13640–13648 (2007). [CrossRef]
  36. D. P. Kelly, J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Quantifying the 2.5D imaging performance of digital holographic systems,” J. Eur. Opt. Soc. 6, 11031 (2011). [CrossRef]
  37. Nikon Microscopy Education Resource, http://www.microscopyu.com/articles/optics/objectiveproperties.html , retrieved September 2010.
  38. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Company, 2005).
  39. U. Schnars and W. Jüptner, Digital Holography (Springer-Verlag, 2005).
  40. J. J. Barton, “Photoelectron holography,” Phys. Rev. Lett. 61, 1356–1359 (1988). [CrossRef]
  41. J. J. Barton, “Removing multiple scattering and twin images from holographic images,” Phys. Rev. Lett. 67, 3106–3109 (1991). [CrossRef]
  42. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132–1134 (2004). [CrossRef]
  43. D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006). [CrossRef]
  44. D. P. Kelly, J. T. Sheridan, and W. T. Rhodes, “Fundamental diffraction limitations in a paraxial 4f imaging system with coherent and incoherent illumination,” J. Opt. Soc. Am. A 24, 1911–1919 (2007). [CrossRef]
  45. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948). [CrossRef]
  46. C.-S. Guo, Q.-Y. Yue, G.-X. Wei, L.-L. Lu, and S.-J. Yue, “Laplacian differential reconstruction of in-line holograms recorded at two different distances,” Opt. Lett. 33, 1945–1947 (2008). [CrossRef]
  47. C. P. Mc Elhinney, B. M. Hennelly, L. Ahrenberg, and T. J. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008). [CrossRef]
  48. P. Barrett and B. Glennon, “Characterizing the meta-stable zone width and solubility curve using lasentec FBRM and PVM,” Chem. Eng. Res. Des. 80, 799–805 (2002). [CrossRef]
  49. K. M. Molony, J. P. Ryle, S. McDonnell, J. T. Sheridan, and T. J. Naughton, “Segmentation and visualization of digital in-line holographic microscopy of three-dimensional scenes using reconstructed intensity images,” Proc. SPIE 7443, 74431F (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited