OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 8 — Mar. 10, 2013
  • pp: 1564–1573

Measuring high-resolution sky luminance distributions with a CCD camera

Korntip Tohsing, Michael Schrempf, Stefan Riechelmann, Holger Schilke, and Gunther Seckmeyer  »View Author Affiliations

Applied Optics, Vol. 52, Issue 8, pp. 1564-1573 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (822 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe how sky luminance can be derived from a newly developed hemispherical sky imager (HSI) system. The system contains a commercial compact charge coupled device (CCD) camera equipped with a fish-eye lens. The projection of the camera system has been found to be nearly equidistant. The luminance from the high dynamic range images has been calculated and then validated with luminance data measured by a CCD array spectroradiometer. The deviation between both datasets is less than 10% for cloudless and completely overcast skies, and differs by no more than 20% for all sky conditions. The global illuminance derived from the HSI pictures deviates by less than 5% and 20% under cloudless and cloudy skies for solar zenith angles less than 80°, respectively. This system is therefore capable of measuring sky luminance with the high spatial and temporal resolution of more than a million pixels and every 20 s respectively.

© 2013 Optical Society of America

OCIS Codes
(000.2190) General : Experimental physics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 26, 2012
Revised Manuscript: January 31, 2013
Manuscript Accepted: February 7, 2013
Published: March 5, 2013

Korntip Tohsing, Michael Schrempf, Stefan Riechelmann, Holger Schilke, and Gunther Seckmeyer, "Measuring high-resolution sky luminance distributions with a CCD camera," Appl. Opt. 52, 1564-1573 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Commission International de l’Éclairage (CIE), Daylight (CIE Central Bureau Paris, 1970).
  2. E. Vartiainen, “Electricity benefits of daylighting and photovoltaics for various solar facade layouts in office buildings,” Energy Build. 33, 113–120 (2001). [CrossRef]
  3. I. H. Yang and E. J. Nam, “Economic analysis of the daylight-linked lighting control system in office buildings,” Solar Energy 84, 1513–1525 (2010). [CrossRef]
  4. L. Heschong, “Daylighting and human performance,” ASHRAE J. 44, 65–67 (2002).
  5. W. J. M. Van Bommel and G. J. Van den Beld, “Lighting for work: a review of visual and biological effects,” Lighting Res. Technol. 36, 255–269 (2004). [CrossRef]
  6. M. Hietanen, “Ocular exposure to solar ultraviolet and visible radiation at high latitudes,” Scand. J. Work Environ. Health 17, 398–403 (1991). [CrossRef]
  7. Commission International de l’Éclairage (CIE), Photometry—the CIE System of Physical Photometry (CIE Central Bureau Vienna, 2000).
  8. V. Ferraro, M. Mele, and V. Malinelli, “Sky luminance measurements and comparison with models,” J. Atmos. Sol.-Terr. Phys. 73, 1780–1789 (2011). [CrossRef]
  9. R. Perez, R. Seals, and J. Michalsky, “All-weather model for sky luminance distribution—preliminary configuration and validation,” Sol. Energy 50, 235–245 (1993).
  10. N. Igawa, Y. Koga, T. Matsuzawa, and H. Nakamura, “Models of sky radiance distribution and sky luminance distribution,” Sol. Energy 77, 137–157 (2004). [CrossRef]
  11. J. Krochmann and M. Seidl, “Quantitative data on daylight for illuminating engineering,” Lighting Res. Technol. 6, 165–171 (1974). [CrossRef]
  12. M. Karayel, M. Navvab, E. Ne’eman, and S. Selkowitz, “Zenith luminance and sky luminance distributions for daylighting calculations,” Energy Build. 6, 283–291 (1984). [CrossRef]
  13. S. Janjai, I. Masiri, M. Nunez, and J. Laksanaboonsong, “Modeling sky luminance using satellite data to classify sky conditions,” Build. Environ. 43, 2059–2073 (2008). [CrossRef]
  14. D. Kinghorn and T. Muneer, “All-sky zenith luminance models for the UK,” Lighting Res. Technol. 31, 49–56(1999). [CrossRef]
  15. A. Cazorla, F. J. Olmo, and L. Alados-Arboledas, “Development of a sky imager for cloud cover assessment,” J. Opt. Soc. Am. A 25, 29–39 (2008). [CrossRef]
  16. J. E. Shields, R. W. Johnson, M. E. Karr, and J. L. Wertz, “Automated day/night whole sky imagers for field assessment of cloud cover distributions and radiance distribution,” in Tenth Symposium on Meteorological Observations and Instrument (American Meteorological Society, 1998).
  17. U. Feister, J. Shields, M. Karr, R. Johnson, K. Dehne, and M. Woldt, “Ground-based cloud images and sky radiance in the visible and near infrared region from whole sky image measurement,” in EUMETSAT Satellite Application Facility Workshop (German Weather Service and World Meteorological Organization, 2000), pp. 79–88.
  18. A. Kreuter, M. Zangerl, M. Schwarzmann, and M. Blumthaler, “All-sky imaging: a simple, versatile system for atmospheric research,” Appl. Opt. 48, 1091–1097 (2009). [CrossRef]
  19. M. Yamashita, M. Yoshimura, and T. Nakashizaka, “Cloud cover estimation using multitemporal hemispherical imageries,” Int. Arch. Photogram. Rem. Sens. Spatial Inform. Sci. 35, 826–829 (2004). [CrossRef]
  20. A. Heinle, A. Macke, and A. Srivastav, “Automatic cloud classification of whole sky images,” Atmos. Meas. Tech. 3, 557–567 (2010). [CrossRef]
  21. F. J. Olmo, A. Cazorla, L. Alados-Arboledas, M. A. López-Álvarez, J. Hernández-Andrés, and J. Romero, “Retrieval of the optical depth using an all-sky CCD camera,” Appl. Opt. 47, H182–H189 (2008). [CrossRef]
  22. K. J. Voss and G. Zibordi, “Radiometric and geometric calibration of a visible spectral electro-optic “fisheye” camera radiance distribution system,” J. Atmos. Oceanic Technol. 6, 652–662 (1989). [CrossRef]
  23. E. G. Rossini and A. Krenzinger, “Maps of sky relative radiance and luminance distributions acquired with a monochromatic CCD camera,” Sol. Energy 81, 1323–1332 (2007). [CrossRef]
  24. R. Román, M. Antón, A. Cazorla, A. de Miquel, F. J. Olmo, J. Bilbao, and L. Alados-Arboledas, “Calibration of an all-sky camera for obtaining sky radiance at three wavelengths,” Atmos. Meas. Tech. 5, 2013–2024 (2012). [CrossRef]
  25. G. G. Roy, S. Hayman, and W. Julian, “Sky modeling from digital imagery,” ARC Project A89530177, Final Report (The University of Sydney and Murdoch University, 1998).
  26. A. Ansko, K. Eerme, S. Lätt, M. Noorma, and U. Veismann, “Study of suitability of AvaSpec array spectrometer for solar UV field measurements,” Atmos. Chem. Phys. 8, 3247–3253 (2008). [CrossRef]
  27. N. Kouremeti, A. Bais, S. Kazadzis, M. Blumthaler, and R. Schmitt, “Charge-coupled device spectrograph for direct solar irradiance and sky radiance measurements,” Appl. Opt. 47, 1594–1607 (2008). [CrossRef]
  28. L. Ylianttila, R. Visuri, L. Huurto, and K. Jokela, “Evaluation of a single-monochromator diode array spectroradiometer for sunbed UV-radiation measurements,” Photochem. Photobiol. 81, 333–341 (2005). [CrossRef]
  29. A. Kreuter and M. Blumthaler, “Stray light correction for solar measurements using array spectrometers,” Rev. Sci. Instrum. 80, 096108 (2009). [CrossRef]
  30. G. Seckmeyer, A. Bais, G. Bernhard, M. Blumthaler, S. Drüke, P. Kiedron, K. Lantz, R. L. McKenzie, and S. Riechelmann, “Instruments to measure solar ultraviolet radiation, part 4: array spectroradiometers,” in WMO, Global Atmospheric Watch (World Meteorological Organization, 2010), p. 43.
  31. D. Pissulla, G. Seckmeyer, R. R. Cordero, M. Blumthaler, B. Schallhart, A. Webb, R. Kift, A. Smedley, A. F. Bais, N. Kouremeti, A. Cede, J. Herman, and M. Kowalewski, “Comparison of atmospheric spectral radiance measurement from five independently calibrated systems,” Photochem. Photobiol. Sci. 8, 516–527 (2009). [CrossRef]
  32. R. R. Cordero, G. Seckmeyer, D. Pissulla, and F. Labbe, “Uncertainty of experimental integrals: application to the UV index calculation,” Metrologia 45, 1–10 (2008). [CrossRef]
  33. S. Wuttke and G. Seckmeyer, “Spectral radiance and sky luminance in Antarctica: a case study,” Theor. Appl. Climatol. 85, 131–148 (2006). [CrossRef]
  34. S. Wuttke, G. Bernhard, J. Ehramjian, R. McKenzie, P. Johnston, M. O’Neil, and G. Seckmeyer, “New spectroradiometers complying with NDSC standards,” J. Atmos. Ocean. Technol. 23, 241–251 (2006). [CrossRef]
  35. G. Bernhard and G. Seckmeyer, “Uncertainty of measurements of spectral solar UV irradiance,” J. Geophys. Res. 104, 14321–14345 (1999). [CrossRef]
  36. R. R. Cordero, G. Seckmeyer, D. Pissulla, and F. Labbe, “Uncertainty evaluation of spectral UV irradiance measurements,” Meas. Sci. Technol. 19, 045104 (2008). [CrossRef]
  37. Commission International de l’Éclairage (CIE), Characterization of the Performance of Illuminance Meters and Luminance Meters (CIE Central Bureau Vienna, 2012).
  38. Commission International de l’Éclairage (CIE), International Lighting Vocabulary (CIE Central Bureau Vienna, 2011).
  39. Czibula & Grundmann, “Photometer Datasheet,” (Czibula & Grundmann GmbH, 2006).
  40. D. Schneider, E. Schwalbe, and H. G. Maas, “Validation of geometric models for fisheye lenses,” ISPRS J. Photogramm. Remote Sens. 64, 259–266 (2009).
  41. M. Gates, ed., www.stellarium.org/de (2009).
  42. M. A. Robertson, S. Borman, and R. L. Stevenson, “Estimation-theoretic approach to dynamic range enhancement using multi exposures,” J. Electron. Imaging 12, 219–228 (2003). [CrossRef]
  43. N. Sun, H. Mansour, and R. Ward, “HDR image construction from multi-exposed stereo LDR images,” in Proceedings of IEEE 17th International Conference on Image Processing (IEEE, 2010), pp. 2973–2976.
  44. DIN 5032, International Vocabulary of Basic and General Terms in Metrology (Beuth, 1999).
  45. P. R. Tregenza and I. M. Waters, “Daylight coefficients,” Lighting Res. Technol. 15, 65–71 (1983). [CrossRef]
  46. P. J. Starks, E. A. Walter-Shea, F. R. Schiebe, and B. L. Markham, “Temperature sensitivity characterization of a silicon diode array spectroradiometer,” Remote Sens. Environ. 51, 385–389 (1995). [CrossRef]
  47. J. Estrada, R. Alvarez, T. Abbott, J. Annis, M. Bonati, E. Buckley-Geer, J. Campa, H. Cease, S. Chappa, D. Depoy, G. Derylo, H. T. Diehl, B. Flaugher, J. Hao, S. Holland, D. Huffman, I. Karliner, D. Kubik, S. Kuhlmann, K. Kuk, H. Lin, N. Roe, V. Scarpine, R. Schmidt, K. Schultz, T. Shaw, V. Simaitis, H. Spinka, W. Stuermer, D. Tucker, A. Walker, and W. Wester, “Focal plane detectors for dark energy camera (DECam),” Proc. SPIE 7735, 77351R (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited