OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 8 — Mar. 10, 2013
  • pp: 1574–1580

Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem

Mohammad R. N. Avanaki, Adrian Gh. Podoleanu, John B. Schofield, Carole Jones, Manu Sira, Yan Liu, and Ali Hojjat  »View Author Affiliations


Applied Optics, Vol. 52, Issue 8, pp. 1574-1580 (2013)
http://dx.doi.org/10.1364/AO.52.001574


View Full Text Article

Enhanced HTML    Acrobat PDF (792 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical properties extraction algorithm is developed based on enhanced Huygens–Fresnel light propagation theorem, to extract the scattering coefficient of a specific region in an optical coherence tomography (OCT) image. The aim is to quantitatively analyze the OCT images. The algorithm is evaluated using a set of phantoms with different concentrations of scatterers, designed based on Mie theory. The algorithm is then used to analyze basal cell carcinoma and healthy eyelid tissues, demonstrating distinguishable differences in the scattering coefficient between these tissues. In this study, we have taken advantage of the simplification introduced by the utilization of a dynamic focus OCT system. This eliminates the need to deconvolve the reflectivity profile with the confocal gate profile, as the sensitivity of the OCT system is constant throughout the axial range.

© 2013 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.0110) Medical optics and biotechnology : Imaging systems
(290.1350) Scattering : Backscattering

ToC Category:
Imaging Systems

History
Original Manuscript: January 3, 2013
Manuscript Accepted: January 17, 2013
Published: March 5, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Mohammad R. N. Avanaki, Adrian Gh. Podoleanu, John B. Schofield, Carole Jones, Manu Sira, Yan Liu, and Ali Hojjat, "Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem," Appl. Opt. 52, 1574-1580 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-8-1574


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000). [CrossRef]
  2. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics: Wave Propagation Through Random Media (Springer, 1989), Vol. 4.
  3. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997).
  4. R. F. Lutomirski and H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10, 1652–1658 (1971). [CrossRef]
  5. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  6. H. T. Yura and S. G. Hanson, “Optical beam wave propagation through complex optical systems,” J. Opt. Soc. Am. A 4, 1931–1948 (1987). [CrossRef]
  7. H. T. Yura and S. G. Hanson, “Second-order statistics for wave propagation through complex optical systems,” J. Opt. Soc. Am. A 6, 564–575 (1989). [CrossRef]
  8. H. T. Yura, L. Thrane, and P. E. Andersen, “Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium,” J. Opt. Soc. Am. A 17, 2464–2474 (2000). [CrossRef]
  9. A. E. Siegman, Lasers (University Science Books, 1986).
  10. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  11. D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12, 249–259 (2004). [CrossRef]
  12. D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003). [CrossRef]
  13. J. Schmitt, A. Knuttel, M. Yadlowsky, and M. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994). [CrossRef]
  14. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt 32, 6032–6042 (1993). [CrossRef]
  15. J. M. Schmitt, A. Knüttel, A. S. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993). [CrossRef]
  16. J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997). [CrossRef]
  17. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34, 5699–5707 (1995). [CrossRef]
  18. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Contrast and resolution in the optical coherence microscopy of dense biological tissue,” Proc. SPIE 2387, 193–203 (1995). [CrossRef]
  19. Y. Pan, R. Birngruber, and R. Engelhardt, “Contrast limits of coherence-gated imaging in scattering media,” Appl. Opt. 36, 2979–2983 (1997). [CrossRef]
  20. P. E. Andersen, L. Thrane, H. T. Yura, A. Tycho, T. M. Jorgensen, and M. H. Frosz, “Advanced modelling of optical coherence tomography systems,” Phys. Med. Biol. 49, 1307–1327 (2004). [CrossRef]
  21. L. Thrane, “Optical coherence tomography: modeling and applications,” Ph.D. dissertation (Risø National Laboratory, 2001).
  22. D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12, 249–259 (2004). [CrossRef]
  23. H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979). [CrossRef]
  24. I. Dror, A. Sandrov, and N. S. Kopeika, “Experimental investigation of the influence of the relative position of the scattering layer on image quality: the shower curtain effect,” Appl. Opt. 37, 6495–6499 (1998). [CrossRef]
  25. M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Podolenau, “Optimization of excitation of fiber Fabry–Perot tunable filters used in swept sources for optical coherence tomography using simulated annealing algorithm,” IEEE Photon. Technol. Lett. 25, 472–475 (2013). [CrossRef]
  26. J. Pujol, “The solution of nonlinear inverse problems and the Levenberg–Marquardt method,” Geophysics 72, W1–W16 (2007). [CrossRef]
  27. M. Hughes, and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009). [CrossRef]
  28. M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. Gh. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).
  29. M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012). [CrossRef]
  30. M. Avanaki, “Image enhancement algorithms and system optimization for optical coherence tomography,” Ph.D. dissertation (University of Kent, 2011).
  31. A. Hojjatoleslami and M. R. Nasiriavanaki, “OCT skin image enhancement through attenuation compensation,” Appl. Opt. 51, 4927–4935 (2012). [CrossRef]
  32. M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” in Proceedings of the International Conference on Microscopy, Microscience 2010 (Royal Microscopy Society, 2010), p. 152.
  33. C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, 2010).
  34. W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Stat. Assoc. 74, 829–836 (1979). [CrossRef]
  35. M. R. N. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009). [CrossRef]
  36. S. Saeed, “Lookingbill and Marks’ principles of dermatology,” Am. J. Dermatopathol. 29, 496–497 (2007). [CrossRef]
  37. W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited