OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 8 — Mar. 10, 2013
  • pp: 1599–1604

Functional demonstration of a compact silicon diffractive sensor for toluene

Jonathan S. Maikisch and Thomas K. Gaylord  »View Author Affiliations


Applied Optics, Vol. 52, Issue 8, pp. 1599-1604 (2013)
http://dx.doi.org/10.1364/AO.52.001599


View Full Text Article

Enhanced HTML    Acrobat PDF (564 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact silicon diffractive sensor detecting toluene in solution is demonstrated. This sensor is fabricated in silicon-on-insulator and utilizes a standard telecommunications wavelength. In-plane diffraction gratings enable micrometer-scale device sizes and intensity-based (as opposed to spectral-based) detection for increased integrability. Precise grating design enables 2-D sensor arrays without the addition of separate optical splitters. Detection of the relative diffracted and transmitted intensities is independent of attenuation and is thus robust. This proof-of-concept sensor is shown to measure toluene concentrations as low as 100 parts per million, corresponding to a refractive index change of 3×104. In addition, a linear sensor array with individual sensor addressability and 2-D array capability is demonstrated. The characteristics of this sensor type make it promising for field-deployable lab-on-a-chip applications.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.0130) Integrated optics : Integrated optics
(130.6010) Integrated optics : Sensors

ToC Category:
Integrated Optics

History
Original Manuscript: November 29, 2012
Revised Manuscript: February 4, 2013
Manuscript Accepted: February 8, 2013
Published: March 6, 2013

Citation
Jonathan S. Maikisch and Thomas K. Gaylord, "Functional demonstration of a compact silicon diffractive sensor for toluene," Appl. Opt. 52, 1599-1604 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-8-1599


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Adam, J. Dostalek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sens. Actuators B 113, 774–781 (2006). [CrossRef]
  2. J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors (Springer, 2006), Vol. 4.
  3. P. Debackere, D. Taillaert, K. De Vos, S. Scheerlinck, P. Bienstman, and R. Baets, “Si based waveguide and surface plasmon sensors,” Proc. SPIE 6477, 647719 (2007). [CrossRef]
  4. J. R. Krenn, N. Galler, H. Ditlbacher, A. Hohenau, B. Lamprecht, E. Kraker, G. Jakopic, and T. Mayr, “Waveguide-integrated SPR sensing on an all-organic platform,” Proc. SPIE 8073, 80730F (2011). [CrossRef]
  5. G. D. Emmerson, C. B. E. Gawith, I. J. G. Sparrow, R. B. Williams, and P. G. R. Smith, “Physical observation of single step UV-written integrated planar Bragg structures and their application as a refractive-index sensor,” Appl. Opt. 44, 5042–5045 (2005). [CrossRef]
  6. S. M. Tripathi, A. Kumar, E. Marin, and J. P. Meunier, “Bragg grating based biochemical sensor using submicron Si/SiO2 waveguides for lab-on-a-chip applications: a novel design,” Appl. Opt. 48, 4562–4567 (2009). [CrossRef]
  7. V. M. N. Passaro, R. Loiacono, G. D’Amico, and F. De Leonardis, “Design of Bragg grating sensors based on submicrometer optical rib waveguides in SOI,” IEEE Sens. J. 8, 1603–1611 (2008). [CrossRef]
  8. R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B 29, 261–267 (1995). [CrossRef]
  9. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003). [CrossRef]
  10. L. M. Lechuga, K. Zinoviev, L. Fernandez, J. Elizalde, O. E. Hidalgo, and C. Dominguez, “Biosensing microsystem platforms based on the integration of Si Mach-Zehnder interferometer, microfluidics and grating couplers,” Proc. SPIE 7220, 72200L (2009). [CrossRef]
  11. B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A Pure Appl. Opt. 8, 561–566 (2006). [CrossRef]
  12. L. U. Kempen and R. E. Kunz, “Replicated Mach-Zehnder interferometers with focusing grating couplers for sensing applications,” Sens. Actuators B 39, 295–299 (1997). [CrossRef]
  13. B. Y. Shew, Y. C. Cheng, and Y. H. Tsai, “Monolithic SU-8 micro-interferometer for biochemical detections,” Sens. Actuators A 141, 299–306 (2008). [CrossRef]
  14. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010). [CrossRef]
  15. C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006). [CrossRef]
  16. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007). [CrossRef]
  17. J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in PDMS microfluidic channels,” Proc. SPIE 7929, 79290I (2011).
  18. J. S. Maikisch and T. K. Gaylord, “Compact silicon diffractive sensor: design, fabrication, and prototype,” Appl. Opt. 51, 4325–4332 (2012). [CrossRef]
  19. D. P. Campbell, J. L. Moore, J. M. Cobb, N. F. Hartman, B. H. Schneider, and M. G. Venugopal, “Optical system-on-a-chip for chemical and biochemical sensing: the chemistry,” Proc. SPIE 3540, 153–161 (1999). [CrossRef]
  20. MicroChem Corp., Newton, Massachusetts, www.microchem.com .
  21. Soitec, Bernin, France, www.soitec.com .
  22. J. S. Maikisch and T. K. Gaylord, “Optimum parallel-face slanted surface-relief gratings,” Appl. Opt. 46, 3674–3681 (2007). [CrossRef]
  23. S.-D. Wu, T. K. Gaylord, J. S. Maikisch, and E. N. Glytsis, “Optimization of anisotropically etched silicon surface-relief gratings for substrate-mode optical interconnects,” Appl. Opt. 45, 15–21 (2006). [CrossRef]
  24. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  25. E. N. Glytsis and T. K. Gaylord, “Three-dimensional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction,” J. Opt. Soc. Am. A 7, 1399–1420 (1990). [CrossRef]
  26. D. K. Brown, “Nanometer scale Bosch process silicon etching,” presented at the IEEE Electron Ion Photon Beam and Nanofabrication Conference, Anchorage, Alaska, 1–4 June2010.
  27. B. Lu, S.-Q. Xie, J. Wan, R. Yang, Z. Shu, X.-P. Qu, R. Liu, Y. Chen, and E. Huq, “Applications of nanoimprint lithography for biochemical and nanophotonic structures using SU-8,” Int. J. Nanosci. 8, 151–155 (2009). [CrossRef]
  28. S.-Q. Xie, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “Fabrication of 150 nm half-pitch grating templates for nanoimprint lithography,” J. Nanosci. Nanotechnol. 9, 1437–1440 (2009). [CrossRef]
  29. S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85, 914–917 (2008). [CrossRef]
  30. M. Yanagisawa, Y. Tsuji, H. Yoshinaga, N. Kono, and K. Hiratsuka, “Evaluation of nanoimprint lithography as a fabrication process of phase-shifted diffraction gratings of distributed feedback laser diodes,” J. Vac. Sci. Technol. B 27, 2776–2780 (2009). [CrossRef]
  31. DuPont, Wilmington, Delaware, www.dupont.com .
  32. Upchurch Scientific, Oak Harbor, Washington, www.upchurch.com .
  33. Henkel Corporation, Dusseldorf, Germany, www.henkel.com .
  34. B. Dang, M. S. Bakir, and J. D. Meindl, “Integrated thermal-fluidic I/O interconnects for an on-chip microchannel heat sink,” IEEE Electron Device Lett. 27, 117–119(2006). [CrossRef]
  35. B. Dang, M. S. Bakir, D. C. Sekar, C. R. King, and J. D. Meindl, “Integrated microfluidic cooling and interconnects for 2D and 3D chips,” IEEE Trans. Adv. Packaging 33, 79–87(2010).
  36. National Instruments Corporation, Austin, Texas, www.ni.com .
  37. The MathWorks, Inc., Natick, Massachusetts, www.mathworks.com .
  38. Hamamatsu Corp., Bridgewater, New Jersey, www.hamamatsu.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited