OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 8 — Mar. 10, 2013
  • pp: 1636–1640

589 nm laser generation by frequency doubling of a single-frequency Raman fiber amplifier in PPSLT

Lei Zhang, Ye Yuan, Yanhua Liu, Jianhua Wang, Jinmeng Hu, Xinjie Lu, Yan Feng, and Shining Zhu  »View Author Affiliations

Applied Optics, Vol. 52, Issue 8, pp. 1636-1640 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (411 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-power single-frequency 1178 nm continuous-wave laser is generated in a two-stage stimulated-Brillouin-scattering-suppressed all-polarization-maintaining Raman fiber amplifier pumped by 1120 nm fiber lasers. A polarization-extinction-ratio of 30 dB is achieved due to the all-polarization-maintaining configuration and the polarization dependence gain of Raman scattering. Single-pass frequency doubling with a homemade periodically poled near-stoichiometric LiTaO3 crystal (PPSLT) produces an up to 7 W narrow-linewidth laser at 589 nm. The thermally induced dephasing effect is found to be the key issue for improving second-harmonic efficiency.

© 2013 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3550) Lasers and laser optics : Lasers, Raman
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 12, 2012
Manuscript Accepted: January 29, 2013
Published: March 6, 2013

Lei Zhang, Ye Yuan, Yanhua Liu, Jianhua Wang, Jinmeng Hu, Xinjie Lu, Yan Feng, and Shining Zhu, "589 nm laser generation by frequency doubling of a single-frequency Raman fiber amplifier in PPSLT," Appl. Opt. 52, 1636-1640 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm light source based on Raman fiber laser,” Jpn. J. Appl. Phys. 43, L722–L724 (2004). [CrossRef]
  2. J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, “20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers,” Opt. Lett. 28, 2219–2221 (2003). [CrossRef]
  3. M. P. Kalita, S.-u. Alam, C. Codemard, S. Yoo, A. J. Boyland, M. Ibsen, and J. K. Sahu, “Multi-watts narrow-linewidth all fiber Yb-doped laser operating at 1179 nm,” Opt. Express 18, 5920–5925 (2010). [CrossRef]
  4. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm,” Opt. Express 17, 447–454 (2009). [CrossRef]
  5. C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngsø, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express 18, 16345–16352 (2010). [CrossRef]
  6. M. Chen, A. Shirakawa, X. Fan, K.-i. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “Single-frequency ytterbium doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express 20, 21044–21052 (2012). [CrossRef]
  7. A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178 nm CW bismuth-doped fiber laser with 6.4 W output for direct frequency doubling,” Opt. Express 15, 5473–5476 (2007). [CrossRef]
  8. V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44, 834–840 (2008). [CrossRef]
  9. J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589 nm fiber laser source,” Proc. SPIE 6102, 61021F (2006). [CrossRef]
  10. Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fiber Raman amplifiers,” Opt. Express 16, 10927–10932 (2008). [CrossRef]
  11. Y. Feng, L. R. Taylor, and D. B. Calia, “25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star,” Opt. Express 17, 19021–19026 (2009). [CrossRef]
  12. L. R. Taylor, Y. Feng, and D. B. Calia, “50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Opt. Express 18, 8540–8555 (2010). [CrossRef]
  13. Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, “85% efficiency for cw frequency doubling from 1.08 to 0.54 μm,” Opt. Lett. 17, 640–642 (1992). [CrossRef]
  14. T. Sudmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier,” Opt. Express 16, 1546–1551 (2008). [CrossRef]
  15. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm,” Opt. Express 13, 6772–6776 (2005). [CrossRef]
  16. L. Taylor, Y. Feng, D. B. Calia, and W. Hackenberg, “Multi-watt 589 nm Na D[sub 2]-line generation via frequency doubling of a Raman fiber amplifier: a source for LGS-assisted AO,” Proc. SPIE 6272, 627249 (2006).
  17. A. Shirakawa, C. B. Olausson, M. Chen, K.-i. Ueda, J. K. Lyngsø, and J. Broeng, “Power-scalable photonic bandgap fiber sources with 167 W, 1178 nm and 14.5 W, 589 nm radiations,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper APDP6.
  18. Y. Yuan, L. Zhang, Y. Liu, X. Lü, G. Zhao, Y. Feng, and S. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Technol. Sci. 56, 125–128 (2013). [CrossRef]
  19. J. Wang, L. Zhang, J. Hu, L. Si, J. Chen, X. Gu, and Y. Feng, “Efficient linearly polarized ytterbium-doped fiber laser at 1120 nm,” Appl. Opt. 51, 3801–3803 (2012). [CrossRef]
  20. L. Zhang, J. Hu, J. Wang, and Y. Feng, “Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization-maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star,” Opt. Lett. 37, 4796–4798 (2012).
  21. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98, 113103 (2005). [CrossRef]
  22. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16, 11294–11299 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited