OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 8 — Mar. 10, 2013
  • pp: 1655–1662

CMOS-integrated geometrically tunable optical filters

Damiana Lerose, Evie Kho Siaw Hei, Bong Ching Ching, Martin Sterger, Liau Chu Yaw, Frank Michael Schulze, Frank Schmidt, Andrei Schmidt, and Konrad Bach  »View Author Affiliations

Applied Optics, Vol. 52, Issue 8, pp. 1655-1662 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (824 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method for producing monolithically integrated complementary metal–oxide–semiconductor (CMOS) optical filters with different and customer-specific responses. The filters are constituted by a Fabry–Perot resonator formed by two Bragg mirrors separated by a patterned cavity. The filter response can be tuned by changing the geometric parameters of the patterning, and consequently the cavity effective refractive index. In this way, many different filters can be produced at once on a single chip, allowing multichanneling. The filter has been designed, produced, and characterized. The results for a chip with 24 filters are presented.

© 2013 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(130.3120) Integrated optics : Integrated optics devices
(230.4170) Optical devices : Multilayers
(230.5170) Optical devices : Photodiodes
(050.2065) Diffraction and gratings : Effective medium theory
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

Original Manuscript: December 12, 2012
Revised Manuscript: January 27, 2013
Manuscript Accepted: January 28, 2013
Published: March 7, 2013

Damiana Lerose, Evie Kho Siaw Hei, Bong Ching Ching, Martin Sterger, Liau Chu Yaw, Frank Michael Schulze, Frank Schmidt, Andrei Schmidt, and Konrad Bach, "CMOS-integrated geometrically tunable optical filters," Appl. Opt. 52, 1655-1662 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006). [CrossRef]
  2. A. Lambrechts, K. Tack, and F. Pessolano, “Multispectral/hyperspectral imaging: CMOS takes hyperspectral imaging beyond the laboratory,” (2011) http://www.laserfocusworld.com/content/lfw/en/articles/print/volume-47/issue-5/features/multispectral-hyperspectral-imaging-cmos-takes-hyperspectral-imaging-beyond-the-laboratory.html .
  3. R. Thryft, “Tiny camera sees nonvisible spectra,” UDM Electronics (2012) http://www.designnews.com/author.asp?section_id=1392&doc_id=238563&print=yes .
  4. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminium nanowire optical filters,” Opt. Express 18, 19087–19094 (2010). [CrossRef]
  5. A. Spisser, R. LeDantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55 um InP/air-gap micromachined Fabry–Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998). [CrossRef]
  6. J. H. Correia, G. De Graaf, M. Bartek, and R. F. Wolffenbuttel, “A CMOS optical microspectrometer with light-to-frequency converter, bus interface, and stray-light compensation,” IEEE Trans. Instrum. Meas. 6, 1530–1537 (2002).
  7. D. A. G. Bruggemann, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 24, 636–664 (1935). [CrossRef]
  8. J. C. M. Garnett, “Colors in metal glasses and metal films,” Phil. Trans. R. Soc. A 53, 385–420 (1904). [CrossRef]
  9. C. Blanchard, J. A. Portí, J. A. Morente, A. Salinas, and E. A. Navarro, “Determination of the effective permittivity of dielectric mixtures with the transmission line matrix method,” J. Appl. Phys. 102, 064101 (2007). [CrossRef]
  10. O. Stenzel, Physics of Thin Film Optical Spectra (Springer-Verlag, 2005), pp. 45–53.
  11. P. Lalanne and M. Hutley, “The optical properties of artificial media structured at a subwavelength scale,” in Encyclopedia of Optical Engineering (Dekker, 2003), pp. 62–71.
  12. E. Aspnes and J. B. Theeten, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979). [CrossRef]
  13. D. Gäbler and D. Lerose, “CMOS-kompatibles Herstellungsverfahren zur Realisierung eines planaren hyperspektralen optischen Filters,” German Patent DE 10,2011,111,883.0 (31August2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited