OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 8 — Mar. 10, 2013
  • pp: 1663–1667

Controlled switching of discrete solitons in periodically poled lithium niobate waveguide arrays

Hongyun Chen, Tao Lv, Anshou Zheng, and Yanling Han  »View Author Affiliations


Applied Optics, Vol. 52, Issue 8, pp. 1663-1667 (2013)
http://dx.doi.org/10.1364/AO.52.001663


View Full Text Article

Enhanced HTML    Acrobat PDF (599 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We suggest an effective method for controlling nonlinear switching in one-dimensional waveguide arrays formed by the periodically poled lithium niobate. We demonstrate that the ability of switching for discrete solitons is relative to the coupling coefficient that is determined by the applied external electrical field on periodically poled lithium niobate waveguide arrays. Besides the external electrical field, the switching of the discrete solitons is also determined by the excited beams tilted angle. It provides us an easy way to control the light beam propagation in such waveguide arrays based on electro-optical effects when an external electric field is applied.

© 2013 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(230.7370) Optical devices : Waveguides
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 12, 2012
Revised Manuscript: February 1, 2013
Manuscript Accepted: February 7, 2013
Published: March 7, 2013

Citation
Hongyun Chen, Tao Lv, Anshou Zheng, and Yanling Han, "Controlled switching of discrete solitons in periodically poled lithium niobate waveguide arrays," Appl. Opt. 52, 1663-1667 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-8-1663


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 13, 794–796 (1988). [CrossRef]
  2. J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light transmission properties of monolayer square symmetric colloidal crystal via controlled convective self-assembly on one-dimensional grooves,” Adv. Mater. 20, 123 (2008). [CrossRef]
  3. J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26, 7859 (2010). [CrossRef]
  4. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998). [CrossRef]
  5. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000). [CrossRef]
  6. T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, “Anomalous refraction and diffraction in discrete optical systems,” Phys. Rev. Lett. 88, 093901 (2002). [CrossRef]
  7. D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet–Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003). [CrossRef]
  8. R. Iwanow, R. Schiek, G. I. Stegeman, T. Pertsch, F. Lederer, Y. Min, and W. Sohler, “Observation of discrete quadratic solitons,” Phys. Rev. Lett. 93, 113902 (2004). [CrossRef]
  9. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E 66, 046602 (2002). [CrossRef]
  10. Z. Chen and K. McCarthy, “Spatial soliton pixels from partially incoherent light,” Opt. Lett. 27, 2019–2021 (2002). [CrossRef]
  11. J. W. Fleischer, T. Carmon, and M. Segev, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003). [CrossRef]
  12. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147 (2003). [CrossRef]
  13. F. Chen, M. Stepić, C. E. Rüter, D. Runde, and D. Kip, “Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays,” Opt. Express 13, 4314–4324 (2005). [CrossRef]
  14. A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Two-dimensional solitons in cubic fs laser written waveguide arrays in fused silica,” Opt. Express 14, 6055 (2006). [CrossRef]
  15. X. Deng, H. Lao, and X. Chen, “Soliton formation and collapse in tunable waveguide arrays by electro-optic effect,” Appl. Opt. 48, 3731 (2009). [CrossRef]
  16. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).
  17. H. Li, F. Zhou, X. Zhang, and W. Ji, “Picosecond Z-scan study of bound electronic Kerr effect in LiNbO3 crystal associated with two-photon absorption,” Appl. Phys. B 64, 659–662 (1997). [CrossRef]
  18. D. N. Christodoulides, and N. K. Efremidis, “Discrete temporal solitons along a chain of nonlinear coupled microcavities embedded in photonic crystals,” Opt. Lett. 27, 568–570 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited