OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 8 — Mar. 10, 2013
  • pp: 1682–1692

Improving the performance of high-laser-damage-threshold, multilayer dielectric pulse-compression gratings through low-temperature chemical cleaning

Heather P. Howard, Anthony F. Aiello, Justin G. Dressler, Nicholas R. Edwards, Terrance J. Kessler, Alexei A. Kozlov, Ian R. T. Manwaring, Kenneth L. Marshall, James B. Oliver, Semyon Papernov, Amy L. Rigatti, Alycia N. Roux, Ansgar W. Schmid, Nicholas P. Slaney, Christopher C. Smith, Brittany N. Taylor, and Stephen D. Jacobs  »View Author Affiliations


Applied Optics, Vol. 52, Issue 8, pp. 1682-1692 (2013)
http://dx.doi.org/10.1364/AO.52.001682


View Full Text Article

Enhanced HTML    Acrobat PDF (2254 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A low-temperature chemical cleaning approach has been developed to improve the performance of multilayer dielectric pulse-compressor gratings for use in the OMEGA EP laser system. X-ray photoelectron spectroscopy results guided the selection of targeted cleaning steps to strip specific families of manufacturing residues without damaging the grating’s fragile 3D profile. Grating coupons that were cleaned using the optimized method consistently met OMEGA EP requirements on diffraction efficiency and 1054 nm laser-damage resistance at 10 ps. The disappearance of laser-conditioning effects for the highest-damage-threshold samples suggests a transition from a contamination-driven laser-damage mechanism to defect-driven damage for well-cleaned components.

© 2013 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(230.1950) Optical devices : Diffraction gratings
(310.4925) Thin films : Other properties (stress, chemical, etc.)
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 20, 2012
Revised Manuscript: February 7, 2013
Manuscript Accepted: February 8, 2013
Published: March 7, 2013

Citation
Heather P. Howard, Anthony F. Aiello, Justin G. Dressler, Nicholas R. Edwards, Terrance J. Kessler, Alexei A. Kozlov, Ian R. T. Manwaring, Kenneth L. Marshall, James B. Oliver, Semyon Papernov, Amy L. Rigatti, Alycia N. Roux, Ansgar W. Schmid, Nicholas P. Slaney, Christopher C. Smith, Brittany N. Taylor, and Stephen D. Jacobs, "Improving the performance of high-laser-damage-threshold, multilayer dielectric pulse-compression gratings through low-temperature chemical cleaning," Appl. Opt. 52, 1682-1692 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-8-1682


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985). [CrossRef]
  2. G. A. Mourou, “Chirped pulse amplification,” in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. P. Bayvel eds., (Elsevier, 2005), pp. 83–84.
  3. L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, “High-energy petawatt capability for the OMEGA laser,” Opt. Photonics News 16(7), 30–36 (2005). [CrossRef]
  4. J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, G. E. Loomis, and R. Chow, “High-energy dielectric multilayer gratings optimized for manufacturability and laser damage threshold,” Proc. SPIE 2714, 511–520 (1996). [CrossRef]
  5. I. Jovanovic, C. G. Brown, B. C. Stuart, W. A. Molander, N. D. Nielsen, B. F. Wattellier, J. A. Britten, D. M. Pennington, and C. P. Barty, “Precision damage tests of multilayer dielectric gratings for high-energy petawatt lasers,” Proc. SPIE 5647, 34–42 (2005). [CrossRef]
  6. T. J. Kessler, J. Bunkenburg, H. Huang, A. Kozlov, and D. D. Meyerhofer, “Demonstration of coherent addition of multiple gratings for high-energy chirped-pulse-amplified lasers,” Opt. Lett. 29, 635–637 (2004). [CrossRef]
  7. J. Qiao, A. Kalb, M. J. Guardalben, G. King, D. Canning, and J. H. Kelly, “Large-aperture grating tiling by interferometry for petawatt chirped-pulse-amplification systems,” Opt. Express 15, 9562–9574 (2007). [CrossRef]
  8. B. Ashe, K. L. Marshall, D. Mastrosimone, and C. McAtee, “Minimizing contamination to multilayer dielectric diffraction gratings within a large vacuum system,” Proc. SPIE 7069, 706902 (2008). [CrossRef]
  9. W.-J. Kong, Z. C. Shen, J. Shen, J.-D. Shao, and Z.-X. Fan, “Investigation of laser-induced damage on multi-layer dielectric gratings,” Chin. Phys. Lett. 22, 1757–1760 (2005). [CrossRef]
  10. W. Kong, S. Liu, J. Shen, Z. Shen, J. Shao, Z. Fan, and J. Yao, “Study on LIDT of MDGs for different fabrication processes,” Microelectron. Eng. 83, 1426–1429 (2006). [CrossRef]
  11. B. Ashe, K. L. Marshall, C. Giacofei, A. L. Rigatti, T. J. Kessler, A. W. Schmid, J. B. Oliver, J. Keck, and A. Kozlov, “Evaluation of cleaning methods for multilayer diffraction gratings,” Proc. SPIE 6403, 64030O (2007). [CrossRef]
  12. B. Ashe, C. Giacofei, G. Myhre, and A. W. Schmid, “Optimizing a cleaning process for multilayer-dielectric- (MLD) diffraction grating,” Proc. SPIE 6720, 67200N (2007). [CrossRef]
  13. S. Chen, B. Sheng, K. Qui, Z. Liu, X. Xu, Y. Liu, Y. Hong, and F. Shaojun, “Cleaning multilayer dielectric pulse compressor gratings with top layer of HfO2 by piranha solution,” High Power Laser Particle Beams 23, 2106–2110 (2011). [CrossRef]
  14. S. Chen, B. Sheng, X. Xu, and S. Fu, “Wet-cleaning of contaminants on the surface of multilayer dielectric pulse compressor gratings by the piranha solution,” Proc. SPIE 7655, 765522 (2010). [CrossRef]
  15. J. A. Britten and H. T. Nguyen, “Method for cleaning diffraction gratings,” U.S. patent application 11/895,392 (23August2007).
  16. B. Xu, S. D. Smith, D. J. Smith, and D. Chargin, “Reactive ion beam etching of large diffraction gratings,” in Proceedings of the 50th Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, 2007), pp. 369–376.
  17. Y. Hong, L. Liu, X. Zhou, X. Xu, and S. Fu, “Development of plasma photoresist descum system for large-aperture diffraction gratings,” Vacuum 45, 25–27 (2008).
  18. A. Bodere, D. Carpentier, A. Accard, and B. Fernier, “Grating fabrication and characterization method for wafers up to 2-in,” Mater. Sci. Eng. B 28, 293–295 (1994). [CrossRef]
  19. H. T. Nguyen, C. C. Larson, and J. A. Britten, “Improvement of laser damage resistance and diffraction efficiency of multilayer dielectric diffraction gratings by HF etchback linewidth tailoring,” Proc. SPIE 7842, 78421H (2010). [CrossRef]
  20. J. Britten, C. Larson, M. D. Feit, and H. T. Nguyen, “Improvement of laser damage resistance and diffraction efficiency of multilayer dielectric diffraction gratings by HF-etchback linewidth tailoring,” presented at the ICUIL 2010 Conference, Watkins Glen, New York, 26 September–1 October2010, paper WO15.
  21. N. Bonod and J. Néauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun. 260, 649–655 (2006). [CrossRef]
  22. J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express 15, 12508–12522 (2007). [CrossRef]
  23. J. Keck, J. B. Oliver, T. J. Kessler, H. Huang, J. Barone, J. Hettrick, A. L. Rigatti, T. Hoover, K. L. Marshall, A. W. Schmid, A. Kozlov, and T. Z. Kosc, “Manufacture and development of multilayer diffraction gratings,” Proc. SPIE 5991, 59911G (2005). [CrossRef]
  24. F. Kong, Y. Jin, W. Chen, M. Zhu, T. Wang, D. Li, Z. Li, G. Xu, H. He, and J. Shao, “Effect of pulse duration on LIDT of multilayer dielectric gratings in vacuum,” presented at SPIE Laser Damage Symposium 2012, Boulder, Colorado, 23–26 September2012.
  25. The OMEGA EP damage-threshold requirement is specified in a plane perpendicular to the beam incident at 61°; thresholds measured at other incidence angles cannot be directly compared. Higher incidence angles (Nguyen et al.’s data [19] were reported for 76.5° incidence, for example) correspond to larger on-sample beam areas, and therefore, higher reported damage thresholds for the same beam fluence. For comparison, an approximate correction can be made using angular projection by multiplying the LIDT by the ratio of cosines of the incidence angles; e.g., an LIDT measured at 61° can be converted to 76.5° by multiplying by a factor of 2.07.
  26. Y. Cui, Y. Zhao, H. Yu, H. He, and J. Shao, “Impact of organic contamination on laser-induced damage threshold of high reflectance coatings in vacuum,” Appl. Surf. Sci. 254, 5990–5993 (2008). [CrossRef]
  27. L.-K. Wu, K.-Y. Chen, S.-Y. Cheng, B.-S. Lee, and C.-M. Shu, “Thermal decomposition of hydrogen peroxide in the presence of sulfuric acid,” J. Therm. Anal. Calorim. 93, 115–120 (2008). [CrossRef]
  28. H. Howard, J. C. Lambropoulos, and S. Jacobs, “Dependence of thermal stresses on substrate thickness during wet processing of large coated optics,” in Optical Fabrication and Testing, OSA Technical Digest (online) (Optical Society of America, 2012), paper OW3D.3.
  29. J. B. Oliver, T. J. Kessler, H. Huang, J. Keck, A. L. Rigatti, A. W. Schmid, A. Kozlov, and T. Z. Kosc, “Thin-film design for multilayer diffraction gratings,” Proc. SPIE 5991, 59911A (2005). [CrossRef]
  30. C. R. Wolfe, M. R. Kozlowski, J. H. Campbell, F. Rainer, A. J. Morgan, and R. P. Gonzales, “Laser conditioning of optical thin films,” Proc. SPIE 1438, 360–375 (1990). [CrossRef]
  31. W. Beck, F. C. Brunner, P. U. Frasch, B. Ivancic, F. W. Schwerdt, and T. Vogtmann, “Method for stripping layers of organic material,” U.S. patent 3,900,337 (19August1975).
  32. G. W. Gale, R. J. Small, and K. A. Reinhardt, “Aqueous cleaning and surface conditioning processes,” in Handbook of Silicon Wafer Cleaning Technology, K. A. Reinhardt and W. Kern, eds., 2nd ed., Materials Science & Process Technology Series (William Andrew, 2008), pp. 201–265.
  33. D. W. Burns, “MEMS wet-etch processes and procedures,” in MEMS Materials and Processes Handbook, R. Ghodssi and P. Lin, eds., (Springer, 2011), Chap. 8, pp. 457–665.
  34. L. M. Sheehan, M. R. Kozlowski, F. Rainer, and M. C. Staggs, “Large-area conditioning of optics for high-power laser systems,” Proc. SPIE 2114, 559–568 (1994). [CrossRef]
  35. M. R. Kozlowski, M. Staggs, F. Rainer, and J. H. Stathis, “Laser conditioning and electronic defects of HfO2 and SiO2 thin films,” Proc. SPIE 1441, 269–282 (1991). [CrossRef]
  36. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1996). [CrossRef]
  37. M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Krüger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited