OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 8 — Mar. 10, 2013
  • pp: 1752–1757

Tunable binary retarder using self-aligned liquid crystal on anisotropic polymer film by photo-assisted imprinting

Jiyoon Kim, Yong-Woon Lim, Jun-Hee Na, and Sin-Doo Lee  »View Author Affiliations

Applied Optics, Vol. 52, Issue 8, pp. 1752-1757 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (599 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an electrically tunable binary retarder (ETBR) with a self-aligned liquid crystal (LC) on an anisotropic polymer film produced by photo-assisted imprinting. The ETBR has two parts: a tunable optical layer of an LC and a static optical layer of an imprinted anisotropic polymer film possessing two different in-plane optic axes. The anisotropic polymer film was produced using reactive mesogens spontaneously aligned along the topographic microgrooves by imprinting under the exposure of ultraviolet light. An electrically tunable hybrid wave plate, whose phase retardation varies from a quarter to a half-wave, is constructed using the self-aligned LC layer on the imprinted polymer film that behaves as a quarter wave plate with two alternating optic axes. This approach can be used to design a new class of tunable optical devices with multiple in-plane optic axes.

© 2013 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.0230) Optical devices : Optical devices
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

Original Manuscript: January 16, 2013
Revised Manuscript: February 18, 2013
Manuscript Accepted: February 18, 2013
Published: March 8, 2013

Jiyoon Kim, Yong-Woon Lim, Jun-Hee Na, and Sin-Doo Lee, "Tunable binary retarder using self-aligned liquid crystal on anisotropic polymer film by photo-assisted imprinting," Appl. Opt. 52, 1752-1757 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3D TV display: techniques and technologies,” IEEE Trans. Circuits Syst. Video Technol. 17, 1647–1658 (2007). [CrossRef]
  2. A. Schwerdtner, R. Haussler, and N. Leister, “Large holographic displays for real-time applications,” Proc. SPIE 6912, 69120T (2008). [CrossRef]
  3. T. Ito and T. Shimobaba, “One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television,” Opt. Express 12, 1788–1793 (2004). [CrossRef]
  4. Y. Yoshihara, H. Ujike, and T. Tanabe, “3D crosstalk of stereoscopic (3D) display using patterned retarder and corresponding glasses,” Proc. IDW 15, 1135–1138 (2008).
  5. H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” SID Int. Symp. Digest Tech. Papers 41, 1–4 (2010). [CrossRef]
  6. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2007). [CrossRef]
  7. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996). [CrossRef]
  8. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005). [CrossRef]
  9. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, and B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641 (1997). [CrossRef]
  10. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004). [CrossRef]
  11. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004). [CrossRef]
  12. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007). [CrossRef]
  13. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach–Zehnder modulator,” Opt. Express 13, 3129–3135 (2005). [CrossRef]
  14. J. A. Davis, J. Adachi, C. R. Fernandez-Pousa, and I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26, 587–589 (2001). [CrossRef]
  15. J.-H. Na, S. C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20, 864–869 (2012). [CrossRef]
  16. J. Kim, J.-H. Na, and S.-D. Lee, “Fully continuous liquid crystal diffraction grating with alternating semi-circular alignment by imprinting,” Opt. Express 20, 3034–3042 (2012). [CrossRef]
  17. Y. Choi, H.-R. Kim, K.-H. Kim, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007). [CrossRef]
  18. H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20, 2045–2052 (2012). [CrossRef]
  19. K.-S. Bae, U. Cha, Y.-K. Moon, J. W. Heo, Y.-J. Lee, J.-H. Kim, and C.-J. Yu, “Reflective three-dimensional displays using the cholesteric liquid crystal with an inner patterned retarder,” Opt. Express 20, 6927–6931 (2012). [CrossRef]
  20. J.-K. Lim and J.-K. Song, “Polymerized micro-patterned optical birefringence film and its fabrication using multi beam mixing,” Opt. Express 19, 26956–26961 (2011). [CrossRef]
  21. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31, 2248–2250 (2006). [CrossRef]
  22. Y.-W. Lim, C.-H. Kwak, and S.-D. Lee, “Anisotropic nano-imprinting technique for fabricating a patterned optical film of a liquid crystalline polymer,” J. Nanosci. Nanotechnol. 8, 4775–4778 (2008). [CrossRef]
  23. X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Soft lithographic methods for nano-fabrication,” J. Mater. Chem. 7, 1069–1074 (1997). [CrossRef]
  24. Y. S. Kim, N. Y. Lee, J. R. Lim, M. J. Lee, and S. Park, “Nanofeature-patterned polymer mold fabrication toward precisely defined nanostructure replication,” Chem. Mater. 17, 5867–5870 (2005). [CrossRef]
  25. D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28, 1683–1686 (1972). [CrossRef]
  26. Hind Instruments, PEM-90 Application Note.
  27. B. Jerome, “Surface effects and anchoring in liquid crystals,” Rep. Prog. Phys. 54, 391–451 (1991). [CrossRef]
  28. Data sheet of MJ 96758 provided by Merck, Ltd.
  29. S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited