OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 8 — Mar. 10, 2013
  • pp: 1764–1770

Imaging high-intensity focused ultrasound-induced tissue denaturation by multispectral photoacoustic method: an ex vivo study

Yao Sun and Brian O’Neill  »View Author Affiliations


Applied Optics, Vol. 52, Issue 8, pp. 1764-1770 (2013)
http://dx.doi.org/10.1364/AO.52.001764


View Full Text Article

Enhanced HTML    Acrobat PDF (749 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an ex vivo study for the first time, to the best of our knowledge, in multispectral photoacoustic imaging (PAI) of tissue denaturation induced by high-intensity focused ultrasound (HIFU) in this paper. Tissue of bovine muscle was thermally treated in a heated water bath and by HIFU, and then was imaged using a multispectral photoacoustic approach. Light at multiple optical wavelengths between 700 and 900 nm was delivered to the treated bovine muscle tissue to excite the photoacoustic signal. Apparent tissue denaturation has been observed in multispectral photoacoustic images after being treated in a water bath and by HIFU. It is interesting that the denaturation is more striking at shorter optical wavelength photoacoustic images than at longer optical wavelength photoacoustic images. Multispectral photoacoustic images of the tissue denaturation were further analyzed and the photoacoustic spectrums of the denaturized tissue were calculated in this paper. This study suggests that a multispectral PAI approach might be a promising tool to evaluate tissue denaturation induced by HIFU treatment.

© 2013 Optical Society of America

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(110.7170) Imaging systems : Ultrasound
(170.1020) Medical optics and biotechnology : Ablation of tissue
(300.6430) Spectroscopy : Spectroscopy, photothermal

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 15, 2012
Revised Manuscript: December 24, 2012
Manuscript Accepted: February 8, 2013
Published: March 8, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Yao Sun and Brian O’Neill, "Imaging high-intensity focused ultrasound-induced tissue denaturation by multispectral photoacoustic method: an ex vivo study," Appl. Opt. 52, 1764-1770 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-8-1764


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. T. Clement, “Perspectives in clinical uses of high-intensity focused ultrasound,” Ultrasonics 42, 1087–1093 (2004). [CrossRef]
  2. T. A. Leslie and J. E. Kennedy, “High-intensity focused ultrasound principles, current uses, and potential for the future,” Ultrasound Q. 22, 263–272 (2006). [CrossRef]
  3. J. E. Kennedy, G. R. ter Haar, and D. Cranston, “High intensity focused ultrasound: surgery of the future?,” Br. J. Radiol. 76, 590–599 (2003). [CrossRef]
  4. J. E. Kennedy, “High-intensity focused ultrasound in the treatment of solid tumours,” Nat. Rev. Cancer 5, 321–327 (2005). [CrossRef]
  5. S. Vaezy, V. Y. Fujimoto, C. Walker, R. W. Martin, E. Y. Chi, and L. A. Crum, “Treatment of uterine fibroid tumors in a nude mouse model using high-intensity focused ultrasound,” Am. J. Obstet. Gynecol. 183, 6–11 (2000). [CrossRef]
  6. E. A. Stewart, J. Rabinovici, C. Tempany, Y. Inbar, L. Regan, B. Gastout, G. Hesley, H. S. Kim, and S. Hengst, “Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids,” Fertil. Steril. 85, 22–29 (2006). [CrossRef]
  7. J. Hindley, W. M. Gedroyc, L. Regan, E. Stewart, C. Tempany, K. Hynnen, N. Macdanold, Y. Inbar, Y. Itzchak, and J. Rabinovici, “MRI guidance of focused ultrasound therapy of uterine fibroids: early results,” AJR Am. J. Roentgenol. 183, 1713–1719 (2004).
  8. J. E. Kennedy, F. Wu, G. R. ter Haar, F. V. Gleeson, R. R. Phillips, M. R. Middleton, and D. Cranston, “High-intensity focused ultrasound for the treatment of liver tumours,” Ultrasonics 42, 931–935 (2004). [CrossRef]
  9. R. O. Illing, J. E. Kennedy, F. Wu, G. R. Ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93, 890–895 (2005). [CrossRef]
  10. S. Thüroff, C. Chaussy, G. Vallancien, W. Wieland, H. J. Kiel, A. le Duc, F. Desgrandchamps, J. J. de la Rosette, and A. Gelet, “High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study,” J. Endourol. 17, 673–677 (2003).
  11. A. Blana, B. Walter, S. Rogenhofer, and W. F. Wieland, “High-intensity focused ultrasound for the treatment of localized prostate cancer: 5-year experience,” Urology 63, 297–300 (2004). [CrossRef]
  12. F. Wu, Z. B. Wang, Y. D. Cao, W. Z. Chen, J. Bai, J. Z. Zou, and H. Zhu, “A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer,” Br. J. Cancer 89, 2227–2233 (2003). [CrossRef]
  13. K. Hynynen, O. Pomeroy, and D. N. Smith, “MR-imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study,” Radiology 219, 176–185 (2001).
  14. K. Hynynen, A. H. Chung, V. Colucci, and F. A. Jolesz, “Potential adverse effects of high-intensity focused ultrasound exposure on blood vessels in vivo,” Ultrasound Med. Biol. 22, 193–201 (1996). [CrossRef]
  15. A. H. Mesiwala, L. Farrell, H. J. Wenzel, D. L. Silbergeld, L. A. Crum, H. R. Winn, and P. D. Mourad, “High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo,” Ultrasound Med. Biol. 28, 389–400 (2002). [CrossRef]
  16. Z. Ram, Z. R. Cohen, S. Harnof, S. Tal, M. Faibel, D. Nass, S. E. Maier, M. Hadani, and Y. Mardor, “Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy,” Neurosurgery 59, 949–956 (2006).
  17. K. Hynynen, “MRI-guided focused ultrasound treatments,” Ultrasonics 50, 221–229 (2010). [CrossRef]
  18. R. Mass-Moreno, C. A. Damianou, and N. T. Sanghvi, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part II. In vitro study,” J. Acoust. Soc. Am. 100, 2522–2530 (1996). [CrossRef]
  19. A. Anand and P. Kaczkowski, “Noninvasive measurement of local thermal diffusivity using backscattered ultrasound and focused ultrasound heating,” Ultrasound Med. Biol. 34, 1449–1464 (2008). [CrossRef]
  20. K. V. Larin, I. V. Larina, and R. O. Esenaliev, “Monitoring of tissue coagulation during thermotherapy using optoacoustic technique,” J. Phys. D 38, 2645–2653 (2005). [CrossRef]
  21. T. D. Khokhlova, I. M. Pelivanov, O. A. Sapozhnikov, V. S. Solomatin, and A. A. Karabutov, “Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments,” Quantum Electron. 36, 1097–1102 (2006). [CrossRef]
  22. A. R. Funke, J.-F. Aubry, M. Fink, A.-C. Boccara, and E. Bossy, “Photoacoustic guidance of high intensity focused ultrasound with selective optical contrasts and time-reversal,” Appl. Phys. Lett. 94, 054102 (2009). [CrossRef]
  23. P. V. Chitnis, H. P. Brecht, R. Su, and A. A. Oraevsky, “Feasibility of optoacoustic visualization of high-intensity focused ultrasound-induced thermal lesions in live tissue,” J. Biomed. Opt. 15, 021313 (2010). [CrossRef]
  24. H. Cui, and X. Yang, “In vivo imaging and treatment of solid tumor using integrated photoacoustic imaging and high intensity focused ultrasound system,” Med. Phys. 37, 4777–4781 (2010). [CrossRef]
  25. A. Prost, A. R. Funke, M. Tanter, and E. Bossy, “Photoacoustic-guided ultrasound therapy with a dual-mode ultrasound array,” J. Biomed. Opt. 17, 061205 (2012). [CrossRef]
  26. A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC, 2003), Vol. PM125, Chap. 34, pp. 34/1–34/34.
  27. Y. Sun, H. Jiang, and B. E. O’Neill, “Photoacoustic imaging: an emerging optical modality in diagnostic and theranostic medicine,” Biosens. Bioelectron. 2, 1000108 (2011). [CrossRef]
  28. S. Y. Emelianov, P. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(5), 34–39 (2009). [CrossRef]
  29. H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002). [CrossRef]
  30. A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001). [CrossRef]
  31. Z. Yuan and H. Jiang, “Simultaneous recovery of tissue physiological and acoustic properties and the criteria for heterogeneous media by quantitative photoacoustic tomography,” Opt. Lett. 34, 1714–1716 (2009). [CrossRef]
  32. Z. Yuan, Q. Wang, and H. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton method,” Opt. Express 15, 18076–18081 (2007). [CrossRef]
  33. Z. Yuan, Q. Zhang, and H. Jiang, “Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography,” Opt. Express 14, 6749–6754 (2006). [CrossRef]
  34. L. Yin, Q. Wang, Q. Zhang, and H. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett. 32, 2556–2558 (2007). [CrossRef]
  35. B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012). [CrossRef]
  36. J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010). [CrossRef]
  37. A. A. Oraevsky, A. A. Karabutov, and S. V. Solomatin, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4526, 6–11 (2001). [CrossRef]
  38. S. Manohar, A. Kharine, C. G. van Hespen, J. W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” Phys. Med. Biol. 50, 2543–2557 (2005). [CrossRef]
  39. L. Xi, S. R. Grobmyer, L. Wu, R. Chen, G. Zhou, L. G. Gutwein, J. Sun, W. Liao, Q. Zhou, and H. Xie, “Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging,” Opt. Express 20, 8726–8731 (2012). [CrossRef]
  40. A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008). [CrossRef]
  41. L. S. Boucharda, M. S. Anwarb, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, A. Pines, and F. F. Chen, “Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles,” Proc. Natl. Acad. Sci. USA 106, 4085–4089 (2009). [CrossRef]
  42. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003). [CrossRef]
  43. X. Wang, X. Xie, G. Ku, and L. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006). [CrossRef]
  44. Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Noninvasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921–1931 (2008). [CrossRef]
  45. Y. Sun, E. Sobel, and H. Jiang, “Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study,” J. Biomed. Opt. 14, 064002 (2009). [CrossRef]
  46. Y. Sun, E. S. Sobel, and H. Jiang, “First assessment of three-dimensional quantitative photoacoustic tomography for in vivo detection of osteoarthritis in the finger joints,” Med. Phys. 38, 4009–4017 (2011). [CrossRef]
  47. J. Laufer, E. Zhang, and P. Beard, “Quantitative in vivomeasurements of blood oxygen saturation using multiwavelength photoacoustic imaging,” Proc. SPIE 6437, 64371Z (2007). [CrossRef]
  48. American National Standard for the Safe Use Lasers in the Health Care Environment (Laser Institute of America, 1996).
  49. J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29, 205–212 (2001). [CrossRef]
  50. A. M. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998). [CrossRef]
  51. W. Zijlstra, A. Buursma, and W. P. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chemistry 37, 1633–1638 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited