OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 9 — Mar. 20, 2013
  • pp: 1847–1851

Narrow bandwidth and polarization independent design of hollow waveguide in-plane mirror with ultrawide tuning-range

Mukesh Kumar  »View Author Affiliations

Applied Optics, Vol. 52, Issue 9, pp. 1847-1851 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A design of an integrated widely tunable in-plane micro-optical mirror based on a hollow waveguide (HWG) consisting of a high index contrast grating (HCG) and a dielectric multilayer distributed Bragg reflector (DBR) is proposed. The in-plane mirror is formed in a variable air-core HWG by loading a SiO2 Bragg grating on the multilayer (DBR) mirror. Ultrawide tuning of 161 and 150 nm in Bragg wavelengths of TE and TM mode, respectively are reported in simulation with a simple tuning scheme and a single tuning parameter of variable air core. The presence of HCG in the proposed design causes a reduction from 88 nm (for DBR–DBR) to 48 nm (for HCG–DBR) in the 3 dB reflection-bandwidth of the proposed in-plane mirror. Also, a four-time reduction in the difference in the reflectivity of the Bragg wavelengths of TE and TM modes is reported because of the introduction of HCG into the hollow waveguide. The reflections of orthogonal polarizations and hence the polarization characteristics of the in-plane mirror are controlled by the combined effect of HCG and DBR.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

Original Manuscript: December 14, 2012
Revised Manuscript: February 8, 2013
Manuscript Accepted: February 8, 2013
Published: March 13, 2013

Mukesh Kumar, "Narrow bandwidth and polarization independent design of hollow waveguide in-plane mirror with ultrawide tuning-range," Appl. Opt. 52, 1847-1851 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990). [CrossRef]
  2. Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic devices,” Conference on Lasers and Electro Optics (CLEO) (IEEE, 2012), paper CTu21.4.
  3. A. Frenkel and C. Lin, “Inline tunable etalon filter for optical channel selection in high density wavelength division multiplexed fibre systems,” Electron. Lett. 24, 159–160 (1988). [CrossRef]
  4. Y. Tohmori, Y. Suematsu, Y. Tushima, and S. Arai, “Wavelength tuning of GaInAsP/InP integrated laser with butt-jointed built-in distributed Bragg reflector,” Electron. Lett. 19, 656–657 (1983). [CrossRef]
  5. http://www.telecomsmarketresearch.com/research/TMAAARXT-New-Markets-for-Telecom-and-Datacom-Lasers-2009-to-2013.shtml .
  6. L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000). [CrossRef]
  7. C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6, 978–987 (2000). [CrossRef]
  8. M.-C. Amann, S. Illek, C. Schanen, and W. Thulke, “Tunable twin-guide laser: a novel laser diode with improved tuning performance,”Appl. Phys. Lett. 54, 2532–2534 (1989). [CrossRef]
  9. T. Chu, N. Fujioka, and M. Ishizaka, “Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators,” Opt. Express 17, 14063–14068 (2009). [CrossRef]
  10. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008). [CrossRef]
  11. Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009). [CrossRef]
  12. T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001). [CrossRef]
  13. M. Ishikawa, T. Miura, A. Matsutani, and F. Koyama, “Design and fabrication of grating demultiplexer using hollow optical waveguide,” Jpn. J. Appl. Phys. 43, L5761–L5763 (2004). [CrossRef]
  14. Y. Sakurai, A. Matsutani, and F. Koyama, “Tunable stop-band hollow waveguide Bragg reflector with tapered air-core for adaptive dispersion-compensation,” Appl. Phys. Lett. 88, 121103 (2006). [CrossRef]
  15. Y. Sakurai, Y. Yokota, A. Matsutani, and F. Koyama, “Tunable hollow waveguide Bragg grating with low-temperature dependence,” Appl. Phys. Lett. 86, 071111 (2005). [CrossRef]
  16. Y. Sakurai and F. Koyama, “Tunable hollow waveguide distributed Bragg reflectors with variable air core,” Opt. Express 12, 2851–2856 (2004). [CrossRef]
  17. M. Kumar, T. Sakaguchi, and F. Koyama, “Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three-dimensional hollow waveguide,” Appl. Phys. Lett. 94, 061112 (2009). [CrossRef]
  18. M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultrawide birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34, 1252–1254 (2009). [CrossRef]
  19. H. Yamakawa and F. Koyama, “Hybrid-integrated tunable hollow waveguide DBR laser,” European Conference on Optical Communications (ECOC 2006) (IEEE, 2006), paper We3.P.54.
  20. H. Yamakawa and F. Koyama, “Athermal GaInAsP/InP semiconductor laser using hollow waveguide distributed Bragg reflector,” 12th Microoptics Conference (MOC2007), Seoul, Korea, 11–14 September (2006), paper A-2.
  21. T. Miura, F. Koyama, and A. Matsutani, “Novel phase-tunable three-dimensional hollow waveguides with variable air core,” IEEE Photon. Technol. Lett. 15, 1240–1242 (2003). [CrossRef]
  22. M. Kumar, C. Chase, V. Karagodsky, T. Sakaguchi, F. Koyama, and C. J. Chang-Hasnain, “Low birefringence and 2-D optical confinement of Hollow waveguide with distributed Bragg reflector and high index contrast grating,” IEEE Photon. J. 1, 135–143 (2009). [CrossRef]
  23. Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express 17, 1508–1513 (2009). [CrossRef]
  24. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14, 1760–1773 (1997). [CrossRef]
  25. F. Prudenzano, L. Mescia, T. Palmisano, M. Surico, M. De Sario, and G. C. Righini, “Optimization of pump absorption in MOF lasers via multi-long-period gratings: design strategies,” Appl. Opt. 51, 1420–1430 (2012). [CrossRef]
  26. M. Kumar, “Polarization insensitive hollow optical waveguide,” Opt. Commun. 285, 2360–2362 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited