OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 9 — Mar. 20, 2013
  • pp: 1881–1887

Apodized design of diffractive axicons for twisted partially coherent light

Mohamed Shukri, Abdu A. Alkelly, and Yaqoub S. Alarify  »View Author Affiliations


Applied Optics, Vol. 52, Issue 9, pp. 1881-1887 (2013)
http://dx.doi.org/10.1364/AO.52.001881


View Full Text Article

Enhanced HTML    Acrobat PDF (1048 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Within the framework of inverse diffractive optics, we present a design for diffractive axicons in twisted, spatially partially coherent fields, in particular twisted Gaussian Schell-model (TGSM) fields. The design is based on the method of stationary phase. A general modification is introduced to the inverse diffractive optics approach for improving the synthesized optical element to produce the desired intensity distribution. Both the design and modification are demonstrated with annular-aperture axicons generating uniform-intensity axial line segments in partially coherent TGSM illumination.

© 2013 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(220.1230) Optical design and fabrication : Apodization

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: December 5, 2012
Revised Manuscript: February 9, 2013
Manuscript Accepted: February 11, 2013
Published: March 14, 2013

Citation
Mohamed Shukri, Abdu A. Alkelly, and Yaqoub S. Alarify, "Apodized design of diffractive axicons for twisted partially coherent light," Appl. Opt. 52, 1881-1887 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-9-1881


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie-Verlag, 1997).
  2. A. T. Friberg and S. Y. Popov, “Effects of partial spatial coherence with uniform-intensity diffractive axicons,” J. Opt. Soc. Am. A 16, 1049–1058 (1999). [CrossRef]
  3. Z. Jaroszewicz, J. Sochacki, A. Kolodziejczyk, and L. R. Staronski, “Apodized annular-aperture logarithmic axicon smoothness and uniformity of intensity distributions,” Opt. Lett. 18, 1893–1895 (1993). [CrossRef]
  4. J. Sochacki, A. Kolodziejczyk, Z. Jaroszewicz, and S. Bara, “Nonparaxial design of generalized axicons,” Appl. Opt. 31, 5326–5330 (1992). [CrossRef]
  5. J. Pu, H. Zhang, S. Nemoto, W. Zhang, and W. Zhang, “Annular-aperture diffractive axicons illuminated by Gaussian beams,” J. Opt. A 1, 730–734 (1999). [CrossRef]
  6. S. Y. Popov and A. T. Friberg, “Design of diffractive axicons for partially coherent light,” Opt. Lett. 23, 1639–1641 (1998). [CrossRef]
  7. A. Thaning, A. T. Friberg, S. Y. Popov, and Z. Jaroszewicz, “Design of diffractive axicons producing uniform line images in Gaussian Schell-model illumination,” J. Opt. Soc. Am. A 19, 491–496 (2002). [CrossRef]
  8. S. Y. Popov, A. T. Friberg, M. Honkanen, J. Lautanen, J. Turunen, and B. Schnabel, “Apodized annular-aperture diffractive axicons fabricated by continuous-path-control electron beam lithography,” Opt. Commun. 154, 359–367 (1998). [CrossRef]
  9. Z. Jaroszewicz, J. Sochacki, A. Kolodziejczyk, and L. R. Staronski, “Apodized annular-aperture logarithmic axicon: smoothness and uniformity of the intensity distributions,” Opt. Lett. 18, 1893–1895 (1993). [CrossRef]
  10. G. Adamkiewicz, Z. Jaroszewicz, A. Koodziejczyk, and T. Osuch, “Apodized diffractive elements obtained with the help of HEBS glasses,” in EOS Topical Meeting Diffractive Optics (EOS, 2005), pp. 151–152.
  11. S. Y. Popov and A. T. Friberg, “Apodization of generalized axicons to produce uniform axial line images,” Pure Appl. Opt. 7, 537–548 (1998). [CrossRef]
  12. A. J. Cox and J. D’Anna, “Constant-axial-intensity nondiffracting beam,” Opt. Lett. 17, 232–234 (1992). [CrossRef]
  13. R. Simon and N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 10, 95–109 (1993). [CrossRef]
  14. R. Simon, K. Sundar, and N. Mukunda, “Twisted Gaussian Schell-model beams. I. symmetry structure and normal-mode spectrum,” J. Opt. Soc. Am. A 10, 2008–2016 (1993). [CrossRef]
  15. K. Saundar, R. Simon, and N. Mukunda, “Twisted Gaussian Schell-model beams. II. spectrum analysis and propagation characteristics,” J. Opt. Soc. Am. A 10, 2017–2023 (1993). [CrossRef]
  16. A. T. Friberg, E. Tervonen, and J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818–1826 (1994). [CrossRef]
  17. A. A. Alkelly, M. A. Shukri, and Y. S. Alarify, “Influences of twist phenomenon of partially coherent field with uniform-intensity diffractive axicons,” J. Opt. Soc. Am. A 29, 417–425(2012). [CrossRef]
  18. M. Shukri, A. A. Alkelly, and Y. S. Alarify, “Spatial correlation properties of twisted partially coherent light focused by diffractive axicons,” J. Opt. Soc. Am. A 29, 2019–2027(2012). [CrossRef]
  19. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems (Von Hoffmann, 2001).
  20. M. R. Perrone, A. Piegari, and S. Scaglione, “On the super-Gaussian unstable resonators for high-gain short-pulse laser media,” IEEE J. Quantum Electron. 29, 1423–1487 (1993). [CrossRef]
  21. Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89, 041117 (2006). [CrossRef]
  22. Y. Cai and Q. Lin, “Focusing properties of partially coherent twisted anisotropic Gaussian Schell-model beams,” Opt. Commun. 215, 239–245 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited