OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 9 — Mar. 20, 2013
  • pp: 1892–1896

Optimal achromatic wave retarders using two birefringent wave plates

Jose Luis Vilas, Luis Miguel Sanchez-Brea, and Eusebio Bernabeu  »View Author Affiliations


Applied Optics, Vol. 52, Issue 9, pp. 1892-1896 (2013)
http://dx.doi.org/10.1364/AO.52.001892


View Full Text Article

Enhanced HTML    Acrobat PDF (193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two plates of different birefringence material can be combined to obtain an achromatic wave retarder. In this work, we achieve a correction for the overall retardation of the system that extends the relation to any azimuth. Current techniques for the design of achromatic wave retarders do not present a parameter that characterizes its achromatism on a range of wavelengths. Thus, an achromatic degree has been introduced, in order to determine the optimal achromatic design composed with retarder plates for a spectrum of incident light. In particular, we have optimized a quarter retarder using two wave plates for the visible spectrum. Our technique has been compared to previous results, showing significant improvement.

© 2013 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(220.4830) Optical design and fabrication : Systems design
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: November 13, 2012
Revised Manuscript: February 1, 2013
Manuscript Accepted: February 4, 2013
Published: March 14, 2013

Citation
Jose Luis Vilas, Luis Miguel Sanchez-Brea, and Eusebio Bernabeu, "Optimal achromatic wave retarders using two birefringent wave plates," Appl. Opt. 52, 1892-1896 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-9-1892


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, 1990).
  2. D. Goldstein, Polarized Light, 3rd ed. (CRC, 2003).
  3. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II. An achromatic quarter-wave plate,” Proc. Indian Acad. Sci. 41A, 137–144 (1955). [CrossRef]
  4. P. Hariharan, “Achromatic retarders using quartz and mica,” Meas. Sci. Technol. 6, 1078–1079 (1995). [CrossRef]
  5. J. J. Gil and E. Bernabeu, “Diseño de rotores, compensadores y moduladores de retardo a partir de retardadores comerciales,” Opt. Pura Apl. 15, 39–43 (1982).
  6. P. Hariharan and D. Malacara, “A simple achromatic half-wave retarder,” J. Mod. Opt. 41, 15–18 (1994). [CrossRef]
  7. B. Boulbry, B. Bousquet, B. Le Jeune, Y. Guern, and J. Lotrian, “Polarization errors associated with zero-order achromatic quarter-wave plates in the whole visible spectral range,” Opt. Express 9, 225–235 (2001). [CrossRef]
  8. A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Achromatic quarter-wave plate using crystalline quartz,” Appl. Opt. 51, 1976–1980 (2012). [CrossRef]
  9. J. B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006). [CrossRef]
  10. R. Pan, C. Lai, C. Lin, C. Hsieh, and C. Pan, “Achromatic liquid crystal phase plate for short laser pulses, molecular crystals and liquid crystals,” Mol. Cryst. Liq. Cryst. 527, 65/[221]–71/[227] (2010). [CrossRef]
  11. G. Kang, Q. Tan, X. Wang, and G. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18, 1695–1703 (2010). [CrossRef]
  12. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
  13. S. Chandrasekhat, “The dispersion and thermo-optic behavior of vitreous silica,” Proc. Indian Acad. Sci. 34A, 275–282 (1951). [CrossRef]
  14. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999). [CrossRef]
  15. J. M. Beckers, “Achromatic linear retarders,” Appl. Opt. 10, 973–975 (1971). [CrossRef]
  16. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics, 3rd ed. (McGraw-Hill, 2009).
  17. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23, 1980–1985 (1984). [CrossRef]
  18. P. D. Hale and G. W. Day, “Stability of birefringent linear retarders (wave plates),” Appl. Opt. 27, 5146–5153 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited