OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 9 — Mar. 20, 2013
  • pp: 1919–1927

Automatic DGD and GVD compensation at 640 Gb/s based on scalar radio-frequency spectrum measurement

Yvan Paquot, Jochen Schröder, Evarist Palushani, Richard Neo, Leif K. Oxenløwe, Steve Madden, Duk-Yong Choi, Barry Luther-Davies, Mark D. Pelusi, and Benjamin J. Eggleton  »View Author Affiliations


Applied Optics, Vol. 52, Issue 9, pp. 1919-1927 (2013)
http://dx.doi.org/10.1364/AO.52.001919


View Full Text Article

Enhanced HTML    Acrobat PDF (950 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate what we believe to be the first real-time impairment-cancellation system for group-velocity dispersion (GVD) and differential group delay (DGD) for a 640 Gb / s single-channel signal. Simultaneous compensation of two independent parameters is demonstrated by feedback control of separate GVD and DGD compensators using an impairment monitor based on an integrated all-optical radio-frequency (RF) spectrum analyzer. We show that low-bandwidth measurement of only a single tone in the RF spectrum is sufficient for automatic compensation for multiple degrees of freedom using a multivariate optimization scheme.

© 2013 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4256) Fiber optics and optical communications : Networks, network optimization

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 27, 2012
Revised Manuscript: February 7, 2013
Manuscript Accepted: February 15, 2013
Published: March 14, 2013

Citation
Yvan Paquot, Jochen Schröder, Evarist Palushani, Richard Neo, Leif K. Oxenløwe, Steve Madden, Duk-Yong Choi, Barry Luther-Davies, Mark D. Pelusi, and Benjamin J. Eggleton, "Automatic DGD and GVD compensation at 640 Gb/s based on scalar radio-frequency spectrum measurement," Appl. Opt. 52, 1919-1927 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-9-1919


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. P. Kaminow, T. Li, and A. E. Willner, eds., Optical Fiber Telecommunications V, A: Components and Subsystems, 5th ed. (Academic, 2008).
  2. A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6  Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26, 79–84 (2008). [CrossRef]
  3. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370×294  Gb/s) PDM-128QAM-OFDM transmission over 3×55  km SSMF using pilot-based phase noise mitigation” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.
  4. P. J. Winzer and R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24, 4711–4728 (2006). [CrossRef]
  5. M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640  Gbit/s transmission experiment over 60 km using 400 fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34, 907–908 (1998). [CrossRef]
  6. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2  Tb/s TDM-data capacity using 16-QAM and coherent detection,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.
  7. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  8. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28  Tbits/s−70  km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000). [CrossRef]
  9. H. Sunnerud, M. Westlund, J. Li, J. Hansryd, M. Karlsson, P.-O. Hedekvist, and P. Andrekson, “Long-term 160  Gb/s-TDM, RZ transmission with automatic PMD compensation and system monitoring using an optical sampling system,” in ECOC ’01: 27th European Conference on Optical Communication (IEEE, 2001), Vol. 6, pp. 18–19.
  10. B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160  Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000). [CrossRef]
  11. S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160  Gbits/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690–691 (2004). [CrossRef]
  12. M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997). [CrossRef]
  13. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994). [CrossRef]
  14. A. Sano, T. Kataoka, M. Tomizawa, K. Hagimoto, K. Sato, K. Wakita, and K. Kato, “Automatic dispersion equalization by monitoring extracted-clock power level in a 40  Gbit/s, 200 km transmission line,” in ECOC ’96: 22nd European Conference on Optical Communication (IEEE, 1996), Vol. 2, pp. 207–210.
  15. F. Heismann, D. A. Fishman, and D. L. Wilson, “Automatic compensation of first-order polarization mode dispersion in a 10  Gb/s transmission system,” in 24th European Conference on Optical Communication (IEEE, 1998), Vol. 1, pp. 529–530.
  16. M. Karlsson, J. Brentel, and P. A. Andrekson, “Long-term measurement of PMD and polarization drift in installed fibers,” J. Lightwave Technol. 18, 941–951 (2000). [CrossRef]
  17. M. J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002). [CrossRef]
  18. T. Takahashi, T. Imai, and M. Aiki, “Automatic compensation technique for timewise fluctuating polarization mode dispersion in in-line amplifier systems,” Electron. Lett. 30, 348–349 (1994). [CrossRef]
  19. Y. Paquot, J. Schröder, J. Van Erps, T. D. Vo, M. D. Pelusi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Single parameter optimization for simultaneous automatic compensation of multiple orders of dispersion for a 1.28 Tbaud signal,” Opt. Express 19, 25512–25520 (2011). [CrossRef]
  20. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Transmission of 42.8  Gbit/s Polarization multiplexed NRZ-QPSK over 6400 km of standard fiber with no optical dispersion compensation,” in OFC/NFOEC 2007: Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2007), pp. 1–3.
  21. F. Buchali and H. Bülow, “Adaptive PMD compensation by electrical and optical techniques,” J. Lightwave Technol. 22, 1116–1126 (2004). [CrossRef]
  22. J. P. Curtis and J. E. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Int. J. Electron. 60, 87–111 (1986). [CrossRef]
  23. I. Shake, W. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett. 34, 2152–2154 (1998). [CrossRef]
  24. P. S. Westbrook, S. Hunsche, G. Raybon, T.-H. Her, and B. J. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193–1194(2002). [CrossRef]
  25. P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T.-H. Her, “Measurement of residual chromatic dispersion of a 40  Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14, 346–348 (2002). [CrossRef]
  26. J. Schröder, O. Brasier, J. Van Erps, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “OSNR monitoring of a 1.28 Tbaud signal by interferometry inside a wavelength-selective switch,” J. Lightwave Technol. 29, 1542–1546(2011). [CrossRef]
  27. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009). [CrossRef]
  28. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol. 26, 73–78 (2008). [CrossRef]
  29. M. Wegmuller, S. Demma, C. Vinegoni, and N. Gisin, “Emulator of first- and second-order polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14, 630–632 (2002). [CrossRef]
  30. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).
  31. T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008). [CrossRef]
  32. Y. K. Lizé, L. Christen, J.-Y. Yang, P. Saghari, S. Nuccio, A. E. Willner, and R. Kashyap, “Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission,” IEEE Photon. Technol. Lett. 19, 2006–2008 (2007). [CrossRef]
  33. D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22, 495–497 (2010). [CrossRef]
  34. T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640  Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18, 3938–3945 (2010). [CrossRef]
  35. J. Gordon, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000). [CrossRef]
  36. H. Sunnerud, C. Xie, M. Karlsson, R. Samuelsson, and P. A. Andrekson, “A comparison between different PMD compensation techniques,” J. Lightwave Technol. 20, 368–378 (2002). [CrossRef]
  37. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988). [CrossRef]
  38. J. Van Erps, J. Schröder, T. D. Vo, M. D. Pelusi, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Automatic dispersion compensation for 1.28  Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring,” Opt. Express 18, 25415–25421 (2010). [CrossRef]
  39. J. Cameron, L. Chen, X. Bao, and J. Stears, “Time evolution of polarization mode dispersion in optical fibers,” IEEE Photon. Technol. Lett. 10, 1265–1267 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited