OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 9 — Mar. 20, 2013
  • pp: 1978–1986

Physical limitations and fundamental factors affecting performance of liquid crystal tunable lenses with concentric electrode rings

Liwei Li, Doug Bryant, Tony van Heugten, and Philip J. Bos  »View Author Affiliations


Applied Optics, Vol. 52, Issue 9, pp. 1978-1986 (2013)
http://dx.doi.org/10.1364/AO.52.001978


View Full Text Article

Enhanced HTML    Acrobat PDF (937 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A comprehensive analysis of fundamental factors and their effects on the performance of liquid crystal (LC)-based lenses is given. The analysis adopts numerical LC director and electric field simulation, as well as scalar diffraction theory for calculating the lens performance considering different variable factors. A high-efficiency LC lens with concentric electrode rings is fabricated for verifying and enriching the analysis. The measurement results are in close agreement with the analysis, and a summary of key factors is given with their quantitative contributions to the efficiency.

© 2013 Optical Society of America

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

History
Original Manuscript: December 10, 2012
Revised Manuscript: February 8, 2013
Manuscript Accepted: February 11, 2013
Published: March 20, 2013

Citation
Liwei Li, Doug Bryant, Tony van Heugten, and Philip J. Bos, "Physical limitations and fundamental factors affecting performance of liquid crystal tunable lenses with concentric electrode rings," Appl. Opt. 52, 1978-1986 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-9-1978


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14, 11292–11298 (2006). [CrossRef]
  2. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004). [CrossRef]
  3. S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6, 471–485 (1999). [CrossRef]
  4. B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250, 266–273 (2005). [CrossRef]
  5. P. Valley, N. Savidis, J. Schwiegerling, M. Reza Dodge, G. Peyman, and N. Peyghambarian, “Adjustable hybrid diffractive/refractive achromatic lens,” Opt. Express 19, 7468–7479 (2011). [CrossRef]
  6. H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).
  7. J. Albero, P. Garcia-Martinez, N. Bennis, E. Oton, B. Cerrolaza, I. Moreno, and J. A. Davis, “Liquid crystal devices for the reconfigurable generation of optical vortices,” J. Lightwave Technol. 30, 3055–3060 (2012). [CrossRef]
  8. M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225, 277–280 (2003). [CrossRef]
  9. S. T. Kowel, D. S. Cleverly, and P. G. Kornreich, “Focusing by electrical modulation of refraction in a liquid crystal cell,” Appl. Opt. 23, 278–289 (1984). [CrossRef]
  10. W. W. Chan and S. T. Kowel, “Imaging performance of the liquid-crystal-adaptive lens with conductive ladder meshing,” Appl. Opt. 36, 8958–8969 (1997). [CrossRef]
  11. G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89, 141120 (2006). [CrossRef]
  12. G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006). [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1988).
  14. G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001).
  15. H. P. Herzig, Micro-optics: Elements, Systems and Applications (Taylor & Francis, 1997).
  16. P. F. Brinkley, S. T. Kowel, and C. Chu, “Liquid crystal adaptive lens: beam translation and field meshing,” Appl. Opt. 27, 4578–4586 (1988). [CrossRef]
  17. X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high-resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46, 044001 (2007). [CrossRef]
  18. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2001).
  19. L. Li, L. Shi, D. Bryant, T. V. Heugten, D. Duston, and P. J. Bos, “Liquid crystal lenses: liquid crystals promise compact lenses with variable focus,” Laser Focus World, http://www.laserfocusworld.com/articles/2010/12/liquid-crystals-promise-compact-lenses-with-variable-focus.html .
  20. P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in SIGGRAPH ’97 (ACM, 1997) pp. 369–378.
  21. L. Li, L. Shi, D. Bryant, T. V. van Heugten, D. Duston, and P. J. Bos, “Modeling and design of a tunable refractive lens based on liquid crystals,” Proc. SPIE 7944,79440S (2011). [CrossRef]
  22. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. H. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634 (2004). [CrossRef]
  23. S. T. Wu and D. K. Yang, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  24. L. Shi, J. Shi, P. F. McManamon, and P. J. Bos, “Design considerations for high efficiency liquid crystal decentered microlens arrays for steering light,” Appl. Opt. 49, 409–421 (2010). [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited