OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 1 — Jan. 1, 2014
  • pp: 1–8

Orthogonal reference pattern multiplexing for collinear holographic data storage

Liangcai Cao, Jinqiu Liu, Jianhua Li, Qingsheng He, and Guofan Jin  »View Author Affiliations


Applied Optics, Vol. 53, Issue 1, pp. 1-8 (2014)
http://dx.doi.org/10.1364/AO.53.000001


View Full Text Article

Enhanced HTML    Acrobat PDF (1008 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An orthogonal reference pattern multiplexing (ORPM) method for collinear holographic data storage (CHDS) is investigated to increase the data storage density and realize parallel optical image superimposition. Holograms are multiplexed in the same volume of the recording medium with multiple orthogonal reference patterns (RPs). The physical principle of this method is analyzed based on scalar diffraction theory. The orthogonal condition of the RPs is derived in order to suppress the interpage cross talk. The parameters of the radial-line RP have significant influence on the signal-to-noise ratio (SNR) of the reconstructed data page. They are optimized to reduce the intrapage cross talk. With a random binary phase mask (RBPM) located closely before the spatial light modulator, SNR of the reconstructed data page is seven times the SNR without the RBPM. Three data pages are multiplexed in the same volume of the medium using the ORPM method. The reconstructed data pages for the CHDS system show the effectiveness of the RBPM in suppressing the intrapage and interpage cross talk.

© 2013 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(090.4220) Holography : Multiplex holography
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(210.2860) Optical data storage : Holographic and volume memories

ToC Category:
Holography

History
Original Manuscript: October 4, 2013
Manuscript Accepted: November 23, 2013
Published: December 23, 2013

Citation
Liangcai Cao, Jinqiu Liu, Jianhua Li, Qingsheng He, and Guofan Jin, "Orthogonal reference pattern multiplexing for collinear holographic data storage," Appl. Opt. 53, 1-8 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-1-1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Horimai, X. D. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005). [CrossRef]
  2. S. Yasuda, Y. Ogasawara, J. Minabe, K. Kawano, and K. Hayashi, “Homodyne readout on dc-removed coaxial holographic data storage,” Appl. Opt. 48, 6851–6861 (2009). [CrossRef]
  3. Y. W. Yu, C. Y. Chen, and C. C. Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Opt. Lett. 35, 1130–1132 (2010). [CrossRef]
  4. W. Jia, Z. Y. Chen, F. J. Wen, C. H. Zhou, Y. T. Chow, and P. S. Chung, “Coaxial holographic encoding based on pure phase modulation,” Appl. Opt. 50, H10–H15 (2011). [CrossRef]
  5. H. Horimai and X. D. Tan, “Holographic versatile disc system,” Proc. SPIE 5939, 593901 (2005).
  6. H. Horimai and X. D. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn. 43, 943–947 (2007). [CrossRef]
  7. T. Tanaka, “Recording and reading temperature tolerance in holographic data storage, in relation to the anisotropic thermal expansion of a photopolymer medium,” Opt. Express 17, 14132–14142 (2009). [CrossRef]
  8. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998). [CrossRef]
  9. H. Horimai, X. D. Tan, J. Li, and K. Suzuki, “Wavelength margin analysis in advanced collinear holography,” Jpn. J. Appl. Phys. 44, 3493–3494 (2005). [CrossRef]
  10. J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Wavelength and defocus margins of the collinear holographic storage system,” Proc. SPIE 7851, 785115 (2010).
  11. J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage,” Opt. Lett. 37, 936–938 (2012). [CrossRef]
  12. Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, and C. C. Sun, “Shifting selectivity of collinear volume holographic storage,” Opt. Commun. 283, 3895–3900 (2010). [CrossRef]
  13. C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng, and M. F. Tsai, “Point spread function of a collinear holographic storage system,” Opt. Express 15, 18111–18118 (2007). [CrossRef]
  14. Y. Saita, T. Nomura, E. Nitanai, and T. Numata, “Design of reference pattern and input phase mask for coaxial holographic memory,” Jpn. J. Appl. Phys. 50, 09ME03 (2011). [CrossRef]
  15. M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007). [CrossRef]
  16. T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. D. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006). [CrossRef]
  17. H. J. Coufal, D. Psaltis, and G. T. E. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Science (Springer-Verlag, 2000), pp. 31–35.
  18. K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003). [CrossRef]
  19. F. H. Mok, M. C. Tackitt, and H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991). [CrossRef]
  20. W. Song, S. Tao, and D. Wang, “Investigation on influence of wavefront property of reference beams on the quality of images reconstructed from holograms,” Proc. SPIE 7730, 77301V (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited