OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 1 — Jan. 1, 2014
  • pp: 111–122

Interference method for ultra-precision measurement and compensation of laser beam angular deflection

Marek Dobosz and Olga Iwasinska-Kowalska  »View Author Affiliations


Applied Optics, Vol. 53, Issue 1, pp. 111-122 (2014)
http://dx.doi.org/10.1364/AO.53.000111


View Full Text Article

Enhanced HTML    Acrobat PDF (951 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new interferometric method for ultra-precise measurement of laser-beam angular deflection is proposed. The angular tilt of a measuring device in relation to the beam axis also can be measured. The method is based on interference fringe period analysis in the selected plane of measurement. The theoretical basis and experimental verification of the method are presented. It is shown that by using the proposed technique, it is possible to measure the laser beam angular deflection or instability with ultrahigh resolution reaching single nanoradians. The proposed method allows the measurement and further compensation of laser beam deflections in a very compact design.

© 2013 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 11, 2013
Revised Manuscript: November 22, 2013
Manuscript Accepted: November 24, 2013
Published: December 23, 2013

Citation
Marek Dobosz and Olga Iwasinska-Kowalska, "Interference method for ultra-precision measurement and compensation of laser beam angular deflection," Appl. Opt. 53, 111-122 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-1-111


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. “Lasers and laser-related equipment—test methods for laser beam parameters—beam positional stability,” International Standard , April2003.
  2. “Measuring laser position & pointing stability—application note,” Photon Inc. Precision Beam Profiling, Photonics Online, 2009, http://www.photonicsonline.com/article.mvc/Measuring-Laser-Position-Pointing-Stability-0002 .
  3. http://www.ophiropt.com/laser-measurement-instruments/beam-profilers/products/slit-based-profilers/nanoscan .
  4. C. A. J. Putman, B. G. De Grooth, N. F. van de Hulst, and J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” Appl. Phys. 72, 6–12 (1992). [CrossRef]
  5. G. Meyer and N. M. Amer, “Optical beam deflection atomic force microscopy: the NaCl (001) surface,” Appl. Phys. Lett. 56, 2100–2101 (1990). [CrossRef]
  6. M. Levesque, A. Mailloux, M. Morin, P. Galarneau, Y. Champagne, O. Plomteux, and M. Tiedtke, “Laser pointing stability measurements,” Proc. SPIE 2870, 216–224 (1996). [CrossRef]
  7. P. S. Huang, S. Kiyono, and O. Kamada, “Angle measurement based on the internal-reflection effect: a new method,” Appl. Opt. 31, 6047–6055 (1992). [CrossRef]
  8. P. S. Huang and J. Ni, “Angle measurement based on the internal-reflection effect using elongated critical-angle prisms,” Appl. Opt. 35, 2239–2241 (1996). [CrossRef]
  9. A. García-Valenzuela, “Detection limits of an internal-reflection sensor for the optical beam deflection method,” Appl. Opt. 36, 4456–4462 (1997). [CrossRef]
  10. A. García-Valenzuela, G. E. Sandoval-Romero, and C. Sánchez-Pérez, “High-resolution optical angle sensors: approaching the diffraction limit to the sensitivity,” Appl. Opt. 43, 4311–4321 (2004). [CrossRef]
  11. J. Villatoro and A. García-Valenzuela, “Measuring optical power transmission near the critical angle for sensing beam deflection,” Appl. Opt. 37, 6649–6653 (1998).
  12. S. Zhang, S. Kiyono, and Y. Uda, “Nanoradian angle sensor and in situ self-calibration,” Appl. Opt. 37, 4154–4159 (1998). [CrossRef]
  13. P. S. Huang, “Use of thin films for high-sensitivity angle measurement,” Appl. Opt. 38, 4831–4836 (1999). [CrossRef]
  14. A. Zhang and P. S. Huang, “Total internal reflection for precision small-angle measurement,” Appl. Opt. 40, 1617–1622 (2001). [CrossRef]
  15. J. Gray, P. Thomas, and X. D. Zhu, “Laser pointing stability measured by an oblique-incidence optical transmittance difference technique,” Rev. Sci. Instrum. 72, 3714–3717 (2001). [CrossRef]
  16. A. García-Valenzuela, M. Peña-Gomar, and J. Villatoro, “Sensitivity analysis of angle sensitive detectors based on a film resonator,” Opt. Eng. 42, 1084–1092 (2003). [CrossRef]
  17. A. García-Valenzuela and R. Díaz-Uribe, “Approach to improve the angle sensitivity and resolution of the optical beam deflection method using a passive interferometer and a Ronchi grating,” Opt. Eng. 36, 1770–1778 (1997). [CrossRef]
  18. E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward, “Automatic alignment of optical interferometers,” Appl. Opt. 33, 5041–5049 (1994). [CrossRef]
  19. P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007). [CrossRef]
  20. P. Kwee, “Laser characterization and stabilization for precision interferometry,” Ph.D. thesis (Von der Fakultat fur Mathematik und Physik der Gottfried Wilhelm Leibniz Universitat Hannover zur Erlangung des Grades, 2010).
  21. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  22. M. Dobosz and O. Iwasińska-Kowalska, “Measuring method for angular deviations of the laser beam and an interferometer for measuring the angular deviations of the laser beam,” Polish patent application P-397925 (January27, 2012) (in Polish).
  23. O. Iwasińska-Kowalska, “A system for precise laser beam angular steering,” Metrol. Meas. Syst.XXI (2014), to be published.
  24. M. Dobosz, “Laser diode distance measuring interferometer—metrological properties,” Metrol. Meas. Syst. XIX, 553–564 (2012).
  25. R. Caulcutt and R. Boddy, Statistics for Analytical Chemists (Chapman & Hall, 1983).
  26. E. C. Fieller, “Some problems in interval estimation,” J. R. Stat. Soc. Ser. B 16, 175–185 (1954).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited