OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 1 — Jan. 1, 2014
  • pp: 64–70

Fast simulation of Strehl loss due to phase aberration for the sizing of adaptive optics in laser communications system design

Thomas C. Farrell  »View Author Affiliations


Applied Optics, Vol. 53, Issue 1, pp. 64-70 (2014)
http://dx.doi.org/10.1364/AO.53.000064


View Full Text Article

Enhanced HTML    Acrobat PDF (508 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An approximation is derived for the phase Strehl of an aberrated wavefront based on uncorrelated random variates. Eliminating the requirement to generate correlated variates offers an orders-of-magnitude improvement in simulation speed, while yielding accuracy that may be sufficient for the preliminary sizing of adaptive optics (AO) in laser communications system design. Examples are presented comparing the performance of several AO subsystem sizes when correcting a wavefront aberrated by Kolmogorov turbulence.

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(030.6600) Coherence and statistical optics : Statistical optics
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 18, 2013
Revised Manuscript: October 18, 2013
Manuscript Accepted: November 21, 2013
Published: December 23, 2013

Citation
Thomas C. Farrell, "Fast simulation of Strehl loss due to phase aberration for the sizing of adaptive optics in laser communications system design," Appl. Opt. 53, 64-70 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-1-64


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001). [CrossRef]
  2. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Theory of optical scintillation: Gaussian-beam wave model,” in Eighth Joint International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics (International Society for Optics and Photonics, 2002), pp. 91–101.
  3. L. C. Andrews and R. L. Phillips, “IK distribution as a universal propagation model of laser beams in atmospheric turbulence,” J. Opt. Soc. Am. A 2, 160–163 (1985). [CrossRef]
  4. L. C. Andrews and R. L. Phillips, “Mathematical genesis of the IK distribution for random optical fields,” J. Opt. Soc. Am. A 3, 1912–1919 (1986). [CrossRef]
  5. D. K. Borah and D. G. Voelz, “Pointing error effects on free-space optical communication links in the presence of atmospheric turbulence,” J. Lightwave Technol. 27, 3965–3973 (2009). [CrossRef]
  6. J. H. Churnside and R. J. Hill, “Probability density of irradiance scintillations for strong path-integrated refractive turbulence,” J. Opt. Soc. Am. A 4, 727–733 (1987). [CrossRef]
  7. J. H. Churnside and S. F. Clifford, “Log-normal Rician probability-density function of optical scintillations in the turbulent atmosphere,” J. Opt. Soc. Am. A 4, 1923–1930 (1987). [CrossRef]
  8. J. H. Churnside and R. G. Frehlich, “Experimental evaluation of log-normally modulated Rician and IK models of optical scintillation in the atmosphere,” J. Opt. Soc. Am. A 6, 1760–1766 (1989). [CrossRef]
  9. J. H. Churnside, “Aperture averaging of optical scintillations in the turbulent atmosphere,” Appl. Opt. 30, 1982–1994 (1991). [CrossRef]
  10. R. Dashen, G.-Y. Wang, S. M. Flatte, and C. Bracher, “Moments of intensity and log intensity: new asymptotic results for waves in power-law media,” J. Opt. Soc. Am. A 10, 1233–1242 (1993). [CrossRef]
  11. F. M. Davidson, G. C. Gilbreath, and E. Oh, “Measurements of intensity scintillations and probability density functions of retroreflected broadband 980-nm laser light in atmospheric turbulence,” Opt. Eng. 43, 2689–2695 (2004). [CrossRef]
  12. S. M. Flatté, C. Bracher, and G.-Y. Wang, “Probability-density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation,” J. Opt. Soc. Am. A 11, 2080–2092 (1994). [CrossRef]
  13. R. J. Hill and R. G. Frehlich, “Probability distribution of irradiance for the onset of strong scintillation,” J. Opt. Soc. Am. A 14, 1530–1540 (1997). [CrossRef]
  14. K. Kiasaleh, “On the probability density function of signal intensity in free-space optical communications systems impaired by pointing jitter and turbulence,” Opt. Eng. 33, 3748–3757 (1994). [CrossRef]
  15. S. D. Lyke, D. G. Voelz, and M. C. Roggemann, “Probability density of aperture-averaged irradiance fluctuations for long range free space optical communication links,” Appl. Opt. 48, 6511–6527 (2009). [CrossRef]
  16. G. Parry and P. N. Pusey, “K distributions in atmospheric propagation of laser light,” J. Opt. Soc. Am. 69, 796–798 (1979). [CrossRef]
  17. R. L. Phillips and L. C. Andrews, “Universal statistical model for irradiance fluctuations in a turbulent medium,” J. Opt. Soc. Am. 72, 864–870 (1982). [CrossRef]
  18. M. C. Teich and P. Diament, “Multiply stochastic representations for K distributions and their Poisson transforms,” J. Opt. Soc. Am. A 6, 80–91 (1989). [CrossRef]
  19. M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. García-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005). [CrossRef]
  20. F. S. Vetelino, C. Young, L. Andrews, and J. Recolons, “Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence,” Appl. Opt. 46, 2099–2108 (2007). [CrossRef]
  21. C. R. Ambrose, Strehl Ratio Probabilities for Phase-Only Adaptive Optics (Naval Postgraduate School, 1999).
  22. L. E. Goad, “Performance scaling laws for adaptive optics systems,” Proc. SPIE 1920, 2–8 (1993). [CrossRef]
  23. S. Gladyszab, J. C. Christoua, and M. Redfernb, “Characterization of the Lick adaptive optics point spread function,” Proc. SPIE 6272, 62720J (2006). [CrossRef]
  24. G. A. Tyler, “Assessment of the statistics of the Strehl ratio: predictions of central limit theorem analysis,” J. Opt. Soc. Am. A 23, 2834–2844 (2006). [CrossRef]
  25. N. Yaitskova and S. Gladysz, “First-order speckle statistics for arbitrary aberration strength,” J. Opt. Soc. Am. A 28, 1909–1919 (2011). [CrossRef]
  26. H. T. Yura and D. L. Fried, “Variance of the Strehl ratio of an adaptive optics system,” J. Opt. Soc. Am. A 15, 2107–2110 (1998). [CrossRef]
  27. D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–77 (1967). [CrossRef]
  28. V. I. Tatarskii, “The effects of the turbulent atmosphere on wave propagation,” Jerusalem: Israel Program for Scientific Translations1 (1971).
  29. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  30. R. J. Sasiela, Electromagnetic Wave Propagation in Turbulence: Evaluation and Application of Mellin Transforms (SPIE, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited