OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 1 — Jan. 1, 2014
  • pp: 76–81

Dispersive element based on grating and tunable Fabry–Perot filter in miniature spectrometer

Zhendong Shi, Liang Fang, and Chongxi Zhou  »View Author Affiliations

Applied Optics, Vol. 53, Issue 1, pp. 76-81 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (690 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new design for the integration of a tunable Fabry–Perot (FP) filter and the grating etched on top of the cavity (IGFP) in the miniature spectrometer. It is based on the predispersion of the grating with the capacity of spatial separation of the spectral component and filter effect of the tunable FP filter. The free spectral range (FSR) of the IGFP is determined by the FSR of the grating, and its resolution depends on the filtering capacity of the FP filter. In the experiment, the high-resolution and wavelength scanning process of the IGFP were demonstrated with a narrowband and broadband light source, respectively. The results of the sub-nanometer resolution agree well with those from a commercial optical spectrum analyzer. Further, the IGFP provides an effective approach to solve the problem of the decrease of spectral resolution in the miniaturization process.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.2440) Instrumentation, measurement, and metrology : Filters
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(230.3120) Optical devices : Integrated optics devices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 4, 2013
Revised Manuscript: November 2, 2013
Manuscript Accepted: November 27, 2013
Published: December 23, 2013

Zhendong Shi, Liang Fang, and Chongxi Zhou, "Dispersive element based on grating and tunable Fabry–Perot filter in miniature spectrometer," Appl. Opt. 53, 76-81 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Carmo, R. P. Rocha, M. Bartek, G. de Graaf, R. F. Wolffenbuttel, and J. H. Correia, “A review of visible-range Fabry–Perot microspectrometers in silicon for the industry,” Opt. Laser Technol. 44, 2312–2320 (2012). [CrossRef]
  2. C. Pinheiro, J. Rocha, L. Goncalves, S. Lanceros-Mendez, and G. Minas, “A tunable Fabry–Perot optical filter for application in biochemical analysis of human’s fluids,” in IEEE International Symposium on Industrial Electronics (IEEE, 2006), pp. 2778–2783.
  3. S. Kong, D. Wijngaards, and R. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators A 92, 88–95 (2001). [CrossRef]
  4. T. A. Kwa and R. F. Wolffenbuttel, “Integrated grating/detector array fabricated in silicon using micromachining techniques,” Sens. Actuators A 31, 259–266 (1992). [CrossRef]
  5. S. C. Truxal, K. Kurabayashi, and Y.-C. Tung, “Design of a MEMS tunable polymer grating for single detector spectroscopy,” Int. J. Optomechatron. 2, 75–87 (2008). [CrossRef]
  6. R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53, 197–202 (2004). [CrossRef]
  7. N. Gupta, S. Tan, and D. R. Zander, “Microelectromechanical systems-based visible-near infrared Fabry–Perot tunable filters using quartz substrate,” Opt. Eng. 51, 074007 (2012). [CrossRef]
  8. D. Lerose, E. K. Siaw Hei, B. C. Ching, M. Sterger, L. C. Yaw, F. M. Schulze, F. Schmidt, A. Schmidt, and K. Bach, “CMOS-integrated geometrically tunable optical filters,” Appl. Opt. 52, 1655–1662 (2013). [CrossRef]
  9. J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sens. Actuators A 82, 191–197 (2000). [CrossRef]
  10. O. Manzardo, H. P. Herzig, C. R. Marxer, and N. F. de Rooij, “Miniaturized time-scanning Fourier transform spectrometer based on silicon technology,” Opt. Lett. 24, 1705–1707 (1999). [CrossRef]
  11. E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007). [CrossRef]
  12. J. Mohr, B. Anderer, and W. Ehrfeld, “Fabrication of a planar grating spectrograph by deep-etch lithography with synchrotron radiation,” Sens. Actuators A 27, 571–575 (1991). [CrossRef]
  13. D. Sander and J. Müller, “Self-focussing phase transmission grating for an integrated optical microspectrometer,” Sens. Actuators A 88, 1–9 (2001). [CrossRef]
  14. T. W. Hänsch, “Repetitively pulsed tunable dye laser for high resolution spectroscopy,” Appl. Opt. 11, 895–898 (1972). [CrossRef]
  15. J. Struckmeier, A. Euteneuer, B. Smarsly, M. Breede, M. Born, M. Hofmann, L. Hildebrand, and J. Sacher, “Electronically tunable external-cavity laser diode,” Opt. Lett. 24, 1573–1574 (1999). [CrossRef]
  16. K. C. Harvey and C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910–912 (1991). [CrossRef]
  17. X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609–613 (2006). [CrossRef]
  18. H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, “Multiwavelength 10-GHz picosecond pulse generation from a single-stripe semiconductor diode laser,” IEEE Photon. Technol. Lett. 9, 1439–1441 (1997). [CrossRef]
  19. C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express 18, 15461–15466 (2010). [CrossRef]
  20. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4, 379–440 (2012). [CrossRef]
  21. N. Neumann, M. Ebermann, S. Kurth, and K. Hiller, “Tunable infrared detector with integrated micromachined Fabry–Perot filter,” J. Micro/Nanolithogr., MEMS, MOEMS 7, 021004 (2008). [CrossRef]
  22. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  23. M. Born and E. Wolf, Principle of Optics, 6th ed. (Pergamon, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited