OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 1 — Jan. 1, 2014
  • pp: 9–13

Dual-channel dispersionless slow light based on plasmon-induced transparency

Xiaoxiang Han  »View Author Affiliations

Applied Optics, Vol. 53, Issue 1, pp. 9-13 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (346 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



I have proposed a dual-channel dispersionless slow-light waveguide system based on plasmon-induced transparency. By appropriately tuning the stub depth, two transparency windows in the transmission spectrum can be achieved due to the destructive interference between the electromagnetic fields from the three stubs. Two flat bands can be achieved in the transparency windows, which have nearly constant group indices over the bandwidth of 2 THz. The analytical results show that the group velocity dispersion parameters of the two channels equal zero, which indicates that the incident pulse can be slowed down without distortion. The proposed plasmonic waveguide system can realize slow-light effect without pulse distortion, and thus can find important applications on slow-light systems, optical buffers, and all-optical signal processors in highly integrated optical circuits.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(200.4490) Optics in computing : Optical buffers
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: August 19, 2013
Revised Manuscript: November 17, 2013
Manuscript Accepted: November 19, 2013
Published: December 23, 2013

Xiaoxiang Han, "Dual-channel dispersionless slow light based on plasmon-induced transparency," Appl. Opt. 53, 9-13 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004). [CrossRef]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  3. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 0236021 (2002).
  4. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008). [CrossRef]
  5. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005). [CrossRef]
  6. L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35, 4184–4186 (2010). [CrossRef]
  7. G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101, 013111 (2012). [CrossRef]
  8. G. Wang, H. Lu, and X. Liu, “Gain-assisted trapping of light in tapered plasmonic waveguide,” Opt. Lett. 38, 558–560 (2013). [CrossRef]
  9. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573–576 (2007). [CrossRef]
  10. R. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010). [CrossRef]
  11. H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36, 3233–3235 (2011). [CrossRef]
  12. H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85, 053803 (2012). [CrossRef]
  13. A. Ishikawa, R. F. Oulton, T. Zentgraf, and X. Zhang, “Slow-light dispersion by transparent waveguide plasmon polaritons,” Phys. Rev. B 85, 155108 (2012). [CrossRef]
  14. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004). [CrossRef]
  15. Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009). [CrossRef]
  16. Q. Gan and F. J. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98, 251103 (2011). [CrossRef]
  17. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  18. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  19. H. Lu, X. M. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010). [CrossRef]
  20. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007). [CrossRef]
  21. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005). [CrossRef]
  22. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010). [CrossRef]
  23. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011). [CrossRef]
  24. Y. Gong, X. Liu, L. Wang, H. Lu, and G. Wang, “Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal,” Opt. Express 19, 9759–9769 (2011). [CrossRef]
  25. H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011). [CrossRef]
  26. Y. Gong, X. Liu, and L. Wang, “High-channel-count plasmonic filter with the metal–insulator–metal Fibonacci-sequence gratings,” Opt. Lett. 35, 285–287 (2010). [CrossRef]
  27. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007). [CrossRef]
  28. R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express 17, 19033–19040 (2009). [CrossRef]
  29. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011). [CrossRef]
  30. G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 444009 (2012). [CrossRef]
  31. S. He, Y. He, and Y. Jin, “Revealing the truth about ‘trapped rainbow’ storage of light in metamaterials,” Sci. Reports 2, 583 (2012).
  32. Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the “rainbow” trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. USA 108, 5169–5173 (2011). [CrossRef]
  33. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011). [CrossRef]
  34. G. Wang, H. Lu, X. Liu, Y. Gong, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium,” Appl. Opt. 50, 5287–5290 (2011). [CrossRef]
  35. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008). [CrossRef]
  36. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structures,” Opt. Express 18, 6191–6204 (2010). [CrossRef]
  37. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  38. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17, 20134–20139 (2009). [CrossRef]
  39. L. Chen, G. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon ploaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80, 161106 (2009).
  40. H. Lu, X. Liu, Y. Gong, D. Mao, and G. Wang, “Analysis of nanoplasmonic wavelength demultiplexing based on metal-insulator-metal waveguide,” J. Opt. Soc. Am. B 28, 1616–1621 (2011). [CrossRef]
  41. J. Chen, C. Wang, R. Zhang, and J. Xiao, “Multiple plasmon-induced transparencies in coupled-resonator systems,” Opt. Lett. 37, 5133–5135 (2012). [CrossRef]
  42. X. Lin and X. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008). [CrossRef]
  43. G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20, 20902–20907 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited