OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: 1990–1993

Pulsed Yb3+-doped fiber laser operating at 1011  nm by intra-cavity phase modulation

Man Jiang, Pu Zhou, Hu Xiao, Rumao Tao, and Xiong Wang  »View Author Affiliations


Applied Optics, Vol. 53, Issue 10, pp. 1990-1993 (2014)
http://dx.doi.org/10.1364/AO.53.001990


View Full Text Article

Enhanced HTML    Acrobat PDF (530 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A 1011 nm pulsed Yb3+-doped fiber laser is experimentally demonstrated by employing a commercially available LiNbO3 phase modulator (PM) in the linear cavity. The resonator is built up with a section of normal single-cladding Yb3+-doped fiber, a PM, and a pair of fiber Bragg gratings. Active mode-locked stable trains of pulses with 2 and 1.4 ns are generated at repetition rates of 30.2478 and 60.4956 MHz, respectively. The maximum average output power is 10.6 mW at pump power of 200 mW, with the slope efficiency of 13.3%. Relaxation-oscillation-modulated pulses with width of 2 μs are obtained at a repetition rate of 27.778 kHz.

© 2014 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3538) Lasers and laser optics : Lasers, pulsed
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 6, 2013
Revised Manuscript: February 18, 2014
Manuscript Accepted: February 19, 2014
Published: March 24, 2014

Citation
Man Jiang, Pu Zhou, Hu Xiao, Rumao Tao, and Xiong Wang, "Pulsed Yb3+-doped fiber laser operating at 1011  nm by intra-cavity phase modulation," Appl. Opt. 53, 1990-1993 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-10-1990


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. T. Case, D. Tan, R. E. Stickel, and J. Mastromarino, “Narrow-linewidth, tunable ultraviolet, Ti:sapphire laser for environmental sensing,” Appl. Opt. 45, 2306–2309 (2006). [CrossRef]
  2. L. Yi, S. Mejri, J. J. MeFerran, Y. LeCoq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett. 106, 073005 (2011). [CrossRef]
  3. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44, 582–590 (2005). [CrossRef]
  4. P. Villwoek, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65, 251–255 (2011). [CrossRef]
  5. R. Steinborn, A. Koglbauer, P. Bachor, T. Diehl, D. Kolbe, M. Stappel, and J. Walz, “A continuous wave 10  W cryogenic fiber amplifier at 1015  nm and frequency quadrupling to 254  nm,” Opt. Express 21, 22693–22698 (2013). [CrossRef]
  6. A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4, 93–102 (2007). [CrossRef]
  7. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010). [CrossRef]
  8. A. Seifert, M. Sinther, T. Walther, and E. S. Fry, “Narrow-linewidth, multi-Watt Yb-doped fiber amplifier at 1014.8  nm,” Appl. Opt. 45, 7908–7911 (2006). [CrossRef]
  9. S. Mo, S. Xu, X. Huang, W. Zhang, Z. Feng, D. Chen, T. Yang, and Z. Yang, “A 1014  nm linearly polarized low noise narrow-linewidth single-frequency fiber laser,” Opt. Express 21, 12419–12423 (2013). [CrossRef]
  10. H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018  nm high-power ytterbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 24, 1088–1090 (2012). [CrossRef]
  11. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009). [CrossRef]
  12. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010). [CrossRef]
  13. A. E. Siegman, Lasers (University Science Books, 1986), p. 1060.
  14. R. Roy and K. S. Thornburg, “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009–2012 (1994). [CrossRef]
  15. D. Östling, G. Sinha, and H. E. Engan, “Spectral stability and smoothness of a phase-modulated fiber laser,” Opt. Lett. 20, 219–221 (1995). [CrossRef]
  16. X. Wang, P. Zhou, X. Wang, R. Tao, and L. Si, “2  μs Tm-doped all-fiber pulse laser with active mode-locking and relaxation oscillation modulating,” IEEE Photon. J. 5, 1502206 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited