OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: 2001–2006

W-band Pancharatnam half-wave plate based on negative refractive index metamaterials

Imran Mohamed, Giampaolo Pisano, and Ming Wah Ng  »View Author Affiliations


Applied Optics, Vol. 53, Issue 10, pp. 2001-2006 (2014)
http://dx.doi.org/10.1364/AO.53.002001


View Full Text Article

Enhanced HTML    Acrobat PDF (551 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electromagnetic metamaterials, made from arrangements of subwavelength-sized structures, can be used to manipulate radiation. Designing metamaterials that have a positive refractive index along one axis and a negative refractive index along the orthogonal axis can result in birefringences, Δn>1. The effect can be used to create wave plates with subwavelength thicknesses. Previous attempts at making wave plates in this way have resulted in very narrow usable bandwidths. In this paper, we use the Pancharatnam method to increase the usable bandwidth. A combination of finite element method and transmission line models was used to optimize the final design. Experimental results are compared with the modeled data.

© 2014 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.0230) Optical devices : Optical devices
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: November 28, 2013
Revised Manuscript: February 17, 2014
Manuscript Accepted: February 18, 2014
Published: March 24, 2014

Citation
Imran Mohamed, Giampaolo Pisano, and Ming Wah Ng, "W-band Pancharatnam half-wave plate based on negative refractive index metamaterials," Appl. Opt. 53, 2001-2006 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-10-2001


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967). [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  3. P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009). [CrossRef]
  4. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I. An achromatic circular polarizer,” Proc. Indian Acad. Sci. A 41, 130–136 (1955).
  5. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II. An achromatic quarter-wave plate,” Proc. Indian Acad. Sci. A 41, 137–144 (1955).
  6. M. N. Afsar, “Precision millimeter-wave dielectric measurements of birefringent crystalline sapphire and ceramic alumina,” IEEE Trans. Instrum. Meas. IM-36, 554–559 (1987). [CrossRef]
  7. J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996). [CrossRef]
  8. A. G. Murray, R. Nartallo, C. V. Haynes, F. Gannaway, and P. a. R. Ade, “An imaging polarimeter for SCUBA,” in Proceedings of the ESA Symposium: The Far Infrared and Submillimetre UniverseA. Wilson, ed. (European Space Agency, 1997), pp. 405–408.
  9. G. Pisano, S. Melhuish, G. Savini, L. Piccirillo, and B. Maffei, “A broadband W-band polarization rotator with very low cross polarization,” IEEE Microw. Wirel. Compon. Lett. 21, 127–129 (2011). [CrossRef]
  10. http://www.ansys.com/Products/Simulation+Technology/Electromagnetics/Signal+Integrity/ANSYS+HFSS
  11. J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88, 221103 (2006). [CrossRef]
  12. N. Marcuvitz, ed., Waveguide Handbook, Vol. 10 of Massachusetts Institute of Technology Radiation Laboratory (Dover, 1965).
  13. D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2012).
  14. G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarization rotation,” Progress Electromagn. Res. M 25, 101–114 (2012).
  15. S. Adachi and E. M. Kennaugh, “The analysis of a broad-band circular polarizer including interface reflections,” IEEE Trans. Microwave Theor. Tech. 8, 520–525 (1960). [CrossRef]
  16. G. Savini, G. Pisano, and P. A. R. Ade, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation,” Appl. Opt. 45, 8907–8915 (2006). [CrossRef]
  17. K. B. Alici and E. Ozbay, “Direct observation of negative refraction at the millimeter-wave regime by using a flat composite metamaterial,” J. Opt. Soc. Am. B 26, 1688–1692 (2009). [CrossRef]
  18. G. Pisano, P. A. R. Ade, and S. Weaver, “Polarisation effects investigations in quasi-optical metal grid filters,” Infrared Phys. Technol. 48, 89–100 (2006). [CrossRef]
  19. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited