OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: 2020–2025

Beam smoothing characteristics of multi-central frequency and multi-color smoothing by spectral dispersion

Zhong Zhe-Qiang and Bin Zhang  »View Author Affiliations

Applied Optics, Vol. 53, Issue 10, pp. 2020-2025 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (501 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multi-central frequency and multi-color smoothing by spectral dispersion (SSD) scheme is presented for better beam smoothing than conventional SSD. One of the difficulties in conventional SSD is the narrow bandwidth limited by efficiency frequency conversion. The new scheme has overcome this problem by using multi-central frequency laser sources and a multi-color beam smoothing system. The multi-central frequency laser sources are incoherent combinations of several pulses in the time domain, each with different central frequencies and independent sinusoidal frequency-modulated components. Then, the laser beams from the multi-central frequency laser sources transmit in the multi-color smoothing system, spatially separated and independently spectrally dispersed by gratings array, independently achieve the third harmonic generation in KDP array with independent phase-matching for efficient conversion. Moreover, by adjusting the dispersion direction of the gratings to be perpendicular to each other, it is an effective way to achieve a 2D beam smoothing effect on the focal plane. Simulation results show that the novel beam smoothing scheme performs better than the conventional SSD.

© 2014 Optical Society of America

OCIS Codes
(140.3210) Lasers and laser optics : Ion lasers
(140.3300) Lasers and laser optics : Laser beam shaping

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 29, 2013
Revised Manuscript: February 11, 2014
Manuscript Accepted: February 15, 2014
Published: March 25, 2014

Zhong Zhe-Qiang and Bin Zhang, "Beam smoothing characteristics of multi-central frequency and multi-color smoothing by spectral dispersion," Appl. Opt. 53, 2020-2025 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989). [CrossRef]
  2. P. W. McKenty, S. Skupsky, J. H. Kelly, and C. T. Cotton, “Numerical investigation of the self-focusing of broad-bandwidth laser light with the applied angular dispersion,” J. Appl. Phys. 76, 2027–2035 (1994). [CrossRef]
  3. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984). [CrossRef]
  4. C. Yang, R. Zhang, Q. Xu, and P. Ma, “Continuous phase plate for laser beam smoothing,” Appl. Opt. 47, 1465–1469 (2008). [CrossRef]
  5. K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, and T. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992). [CrossRef]
  6. D. M. Pennington, M. A. Henesian, R. B. Wilcox, T. L. Weiland, D. Eimerl, R. B. Ehrlich, C. W. Laumann, and J. L. Miller, “Four-color beam smoothing irradiation system for laser-plasma interaction experiments at LLNL,” Proc. SPIE 2633, 228256 (1995). [CrossRef]
  7. R. Zhang, X. Zhang, Z. Sui, J. Wang, H. Lin, M. Li, and H. Jia, “Research on beam smoothing characteristics using linearly modulated light,” Opt. Laser Technol. 40, 1018–1024 (2008). [CrossRef]
  8. T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012). [CrossRef]
  9. D. J. Kuizenga, Laser Program Annual Report-79, Lawrence Livermore National Laboratory, Livermore, California, (1980).
  10. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National ignition facility laser performance status,” Appl. Opt. 46, 3276—3303 (2007). [CrossRef]
  11. J. Xiao and B. Lü, “Characteristics of polarization control plate smoothing interference speckles,” Chinese J. Laser 27, 627–632 (2000) (in Chinese).
  12. Z. Liu, Y. Zhao, and D. Fan, “Improvement of the illumination uniformity in ICF using a random polarization control plate,” Opt. Commun. 152, 1–5 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited