OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: 2087–2092

Faraday rotation of cobalt ferrite nanoparticle polymer composite films at cryogenic temperatures

Veysi Demir, Palash Gangopadhyay, Robert A. Norwood, and Nasser Peyghambarian  »View Author Affiliations


Applied Optics, Vol. 53, Issue 10, pp. 2087-2092 (2014)
http://dx.doi.org/10.1364/AO.53.002087


View Full Text Article

Enhanced HTML    Acrobat PDF (765 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper investigates the behavior of the Verdet constant for cobalt ferrite (CoFe2O4) nanoparticles polymer composite films at low temperatures using a 532 nm laser source. An experimental setup for Faraday rotation (FR) at low temperatures is introduced and FRs were measured at various temperatures. Verdet constants were deduced from the paramagnetic model for terbium gallium garnet glass where 4× improvement was observed at 40° K for CoFe2O4 composite film.

© 2014 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(230.2240) Optical devices : Faraday effect
(240.0310) Optics at surfaces : Thin films

ToC Category:
Optical Devices

History
Original Manuscript: December 4, 2013
Revised Manuscript: February 13, 2014
Manuscript Accepted: February 17, 2014
Published: March 27, 2014

Citation
Veysi Demir, Palash Gangopadhyay, Robert A. Norwood, and Nasser Peyghambarian, "Faraday rotation of cobalt ferrite nanoparticle polymer composite films at cryogenic temperatures," Appl. Opt. 53, 2087-2092 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-10-2087


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Winter, C. Mok, and A. Kumarakrishnan, “Tools for laser spectroscopy: the design and construction of a Faraday isolator,” Can. J. Phys. 84, 845–855 (2006). [CrossRef]
  2. J. M. Hafez, J. Gao, and J. G. Eden, “Detection of weak (∼0.5–300  nT), low frequency (5–100  Hz) magnetic fields at room temperature by kilohertz modulation of the magneto-optical hysteresis in rare earth-iron garnet films,” Appl. Phys. Lett. 90, 132502 (2007). [CrossRef]
  3. C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high-sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002). [CrossRef]
  4. R. Sobolewski and J.-R. Park, “Magneto-optical modulator for superconducting digital output interface,” IEEE Trans. Appl. Supercond. 11, 727–730 (2001). [CrossRef]
  5. M. R. Koblischka and R. J. Wijngaarden, “Magneto-optical investigations of superconductors,” Supercond. Sci. Technol. 8, 199–213 (1995). [CrossRef]
  6. P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112, 8032–8037 (2008).
  7. P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, and M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30, 1176–1178 (1991). [CrossRef]
  8. U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).
  9. N. P. Barnes and L. B. Petway, “Variation of the Verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9, 1912–1915 (1992). [CrossRef]
  10. J. A. Davis and R. M. Bunch, “Temperature dependence of the Faraday rotation of Hoya FR-5 glass,” Appl. Opt. 23, 633–636 (1984). [CrossRef]
  11. K. Maaz, M. Usman, S. Karim, A. Mumtaz, S. K. Hasanain, and M. F. Bertino, “Magnetic response of core-shell cobalt ferrite nanoparticles at low temperature,” J. Appl. Phys. 105, 113917 (2009). [CrossRef]
  12. A. Lopez-Santiago, H. R. Grant, P. Gangopadhyay, R. Voorakaranam, R. A. Norwood, and N. Peyghambarian, “Cobalt ferrite nanoparticles polymer composites based all-optical magnetometer,” Opt. Mater. Express 2, 978–986 (2012). [CrossRef]
  13. http://www.lakeshore.com/products/Cryogenic-Temperature-Sensors/Cernox/Models/Pages/Specifications.aspx .
  14. http://www.hindsinstruments.com/wpcontent/uploads/Determining_Ratio.pdf .
  15. D. H. Goldstein, Polarized Light (CRC, 2010).
  16. V. K. Valev, J. Wouters, and T. Verbiest, “Precise measurements of Faraday rotation using ac magnetic fields,” Am. J. Phys. 76, 626–629 (2008). [CrossRef]
  17. G. van Harten, F. Snik, and C. U. Keller, “Polarization properties of real aluminum mirrors I. Influence of the aluminum oxide layers,” Astron. Soc. Pac. Conf. Ser. 121, 377–383 (2009). [CrossRef]
  18. http://refractiveindex.info/?group=METALS&material=Aluminium .
  19. P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbiest, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Opt. Quantum Opt. 41, 87–104 (2010).
  20. J.-S. Jung, J.-H. Lim, K.-H. Choi, S.-L. Oh, Y.-R. Kim, S.-H. Lee, D. A. Smith, K. L. Stokes, L. Malkinski, and C. J. O’Connor, “CoFe2O4 nanostructures with high coercivity,” J. Appl. Phys. 97, 10F306 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited