OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: 2136–2144

Fiber-optic combined FPI/FBG sensors for monitoring of radiofrequency thermal ablation of liver tumors: ex vivo experiments

Daniele Tosi, Edoardo Gino Macchi, Giovanni Braschi, Alfredo Cigada, Mario Gallati, Sandro Rossi, Sven Poeggel, Gabriel Leen, and Elfed Lewis  »View Author Affiliations

Applied Optics, Vol. 53, Issue 10, pp. 2136-2144 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1153 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a biocompatible, all-glass, 0.2 mm diameter, fiber-optic probe that combines an extrinsic Fabry–Perot interferometry and a proximal fiber Bragg grating sensor; the probe enables dual pressure and temperature measurement on an active 4 mm length, with 40 Pa and 0.2°C nominal accuracy. The sensing system has been applied to monitor online the radiofrequency thermal ablation of tumors in liver tissue. Preliminary experiments have been performed in a reference chamber with uniform heating; further experiments have been carried out on ex vivo porcine liver, which allowed the measurement of a steep temperature gradient and monitoring of the local pressure increase during the ablation procedure.

© 2014 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.6780) Instrumentation, measurement, and metrology : Temperature
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 29, 2013
Revised Manuscript: December 27, 2013
Manuscript Accepted: February 25, 2014
Published: March 28, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Daniele Tosi, Edoardo Gino Macchi, Giovanni Braschi, Alfredo Cigada, Mario Gallati, Sandro Rossi, Sven Poeggel, Gabriel Leen, and Elfed Lewis, "Fiber-optic combined FPI/FBG sensors for monitoring of radiofrequency thermal ablation of liver tumors: ex vivo experiments," Appl. Opt. 53, 2136-2144 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Wood, J. R. Ramkaransingh, M. S. Tito Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer 94, 443–451 (2002). [CrossRef]
  2. L. Solbiati, T. Livraghi, S. Nahum Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology 221, 159–166 (2001). [CrossRef]
  3. A. Orlando, G. Leandro, M. Olivo, A. Andriulli, and M. Cottone, “Radiofrequency thermal ablation vs percutaneous ethanol injection for small hepatocellular carcinoma in cirrhosis: meta-analysis of randomized controlled trials,” Am. J. Gastroenterol. 104, 514–524 (2009).
  4. S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, “Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance,” Am. J. Roentgen. 174, 323–331 (2000). [CrossRef]
  5. P. L. Pereira, “Actual role of radiofreqency ablation of liver metastases,” European Radiol. 7, 291–299 (2007).
  6. M. J. Dodd, “Radiofrequency ablation of the liver: current status,” Am. J. Roentgen. 176, 3–16 (2001). [CrossRef]
  7. S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol. 100, 619–634 (2009). [CrossRef]
  8. S. Curley, “Radiofrequency ablation of malignant liver tumors,” Ann. Surg. Oncol. 1, 338–347 (2003).
  9. M. Sato, Y. Watanabe, S. Ueda, S. Iseki, Y. Abe, N. Sato, S. Kimura, K. Okubo, and M. Onji, “Microwave coagulation therapy for hepatocellular carcinoma,” Gastroenterology 110, 1507–1514 (1996). [CrossRef]
  10. T. Shibata, Y. Iimuro, Y. Yamamoto, Y. Maetani, F. Ametani, K. Itoh, and J. Konishi, “Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy,” Radiology 223, 331–337 (2002). [CrossRef]
  11. F. Ahmad, G. Gravante, N. Bhardwai, A. Strickland, R. Basit, and R. Sorge, “Large volume hepatic microwave ablation elicits fewer pulmonary changes than radiofrequency or cryotherapy,” J. Gastrointest. Surg. 14, 1963–1968 (2010).
  12. C. M. Pacella, G. Bizzarri, F. Magnolfi, P. Cecconi, B. Caspani, V. Anelli, A. Bianchini, D. Valle, S. Pacella, G. Manenti, and Z. Rossi, “Laser thermal ablation in the treatment of small hepatocellular carcinoma: results in 74 patients,” Radiology 221, 712–720 (2001). [CrossRef]
  13. M. Ahmed, C. L. Brace, F. T. Lee, and S. N. Goldberg, “Principles of and advances in percutaneous ablation,” Radiology 258, 351–369 (2011). [CrossRef]
  14. M. Trujillo, J. Alba, and E. Berjano, “Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes,” Int. J. Hyperthermia 28, 62–68 (2012). [CrossRef]
  15. K. Kotoh, M. Enjoji, E. Arimura, S. Morizono, M. Kohjima, H. Sakai, and M. Nakamuta, “Scattered and rapid intrahepatic recurrences after radio frequency ablation for hepatocellular carcinoma,” World J. Gastroenterol. 11, 6828–6832 (2005).
  16. K. Kotoh, M. Nakamuta, S. Morizono, M. Kohjima, E. Arimura, M. Fukushima, M. Enjoji, H. Sakai, and H. Nawata, “A multi-step, incremental expansion method for radio frequency ablation: optimization of the procedure to prevent increases in intra-tumor pressure and to reduce the ablation time,” Liver Int. 25, 542–547 (2005). [CrossRef]
  17. M. Nakamuta, M. Kohjima, S. Morizono, T. Yoshimoto, Y. Miyagi, H. Sakai, M. Enjoji, and K. Kotoh, “Comparison of tissue pressure and ablation time between the LeVeen and cool-tip needle methods,” Comp. Hepatol. 5, 10 (2006). [CrossRef]
  18. E. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley Interscience, 1991).
  19. Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12, 227–237 (2006). [CrossRef]
  20. P. Roriz, O. Frazao, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simoes, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 050903 (2013). [CrossRef]
  21. K. K. Chin, Y. Sun, G. Feng, G. E. Georgiou, K. Guo, E. Niver, H. Roman, and K. Noe, “Fabry–Perot diaphragm fiber-optic sensor,” Appl. Opt. 46, 7614–7619 (2007). [CrossRef]
  22. F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry–Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett. 37, 133–135 (2012). [CrossRef]
  23. L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sens. Actuators A 163, 42–47 (2010). [CrossRef]
  24. P. Polygerinos, D. Zbyszewski, T. Schaeffter, R. Razavi, L. D. Seneviratne, and K. Althoefer, “MRI-compatible fiber-optic force sensors for catheterization procedures,” IEEE Sens. J. 10, 1598–1608 (2010). [CrossRef]
  25. M. Zhou, C. Yang, Z. Liu, J. P. Cysyk, and S. Zheng, “An implantable Fabry–Perot pressure sensor fabricated on left ventricular assist device for heart failure,” Biomed. Microdevices 14, 235–245 (2012). [CrossRef]
  26. K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009). [CrossRef]
  27. K. Bremer, E. Lewis, G. Leen, B. S. Lochmann, and I. A. R. Mueller, “Feedback stabilized interrogation technique for EFPI/FBG hybrid fiber-optic pressure and temperature sensors,” IEEE Sens. J. 12, 133–138 (2012). [CrossRef]
  28. H. Bae and M. Yu, “Miniature Fabry–Perot pressure sensor created by using UV-molding process with an optical fiber based mold,” Opt. Express 20, 14573–14583 (2012). [CrossRef]
  29. Opsens OPP-M, http://www.opsens.com/en/industries/products/pressure/opp-m/ .
  30. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997). [CrossRef]
  31. A. Othonos and K. Kalli, “Properties of fiber Bragg gratings,” in Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), pp. 95–147.
  32. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993). [CrossRef]
  33. S. Poeggel, D. Tosi, G. Leen, and E. Lewis, “Diaphragm etching in extrinsic Fabry–Perot interferometric fiber-optic pressure sensors,” in Conference on Lasers and Electro-Optics (CLEO) Europe, Munich, Germany (2013).
  34. Y. Jiang and W. Ding, “Recent developments in fiber optic spectral white-light interferometry,” Photonic Sens. 1, 62–71 (2011). [CrossRef]
  35. D. Tosi, M. Olivero, G. Perrone, and A. Vallan, “Weigh-in-motion through fibre Bragg grating optical sensors,” Electron. Lett. 46, 1223–1225 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited