OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: 2236–2245

Mueller matrix microscope with a dual continuous rotating compensator setup and digital demodulation

Oriol Arteaga, Marta Baldrís, Joan Antó, Adolf Canillas, Esther Pascual, and Enric Bertran  »View Author Affiliations


Applied Optics, Vol. 53, Issue 10, pp. 2236-2245 (2014)
http://dx.doi.org/10.1364/AO.53.002236


View Full Text Article

Enhanced HTML    Acrobat PDF (2521 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we describe a new Mueller matrix (MM) microscope that generalizes and makes quantitative the polarized light microscopy technique. In this instrument all the elements of the MU are simultaneously determined from the analysis in the frequency domain of the time-dependent intensity of the light beam at every pixel of the camera. The variations in intensity are created by the two compensators continuously rotating at different angular frequencies. A typical measurement is completed in a little over one minute and it can be applied to any visible wavelength. Some examples are presented to demonstrate the capabilities of the instrument.

© 2014 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(240.2130) Optics at surfaces : Ellipsometry and polarimetry

ToC Category:
Imaging Systems

History
Original Manuscript: December 18, 2013
Revised Manuscript: February 19, 2014
Manuscript Accepted: February 23, 2014
Published: March 31, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Oriol Arteaga, Marta Baldrís, Joan Antó, Adolf Canillas, Esther Pascual, and Enric Bertran, "Mueller matrix microscope with a dual continuous rotating compensator setup and digital demodulation," Appl. Opt. 53, 2236-2245 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-10-2236


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging, 1st ed. (Wiley-Liss, 2001).
  2. R. L. Long, M. P. Bange, S. G. Gordon, and G. A. Constable, “Measuring the maturity of developing cotton fibers using an automated polarized light microscopy technique,” Text. Res. J. 80, 463–471 (2010).
  3. D. B. Murphy, Handbook of Microscopy: Applications in Materials Science, Solid-State Physics and Chemistry, vol. 3 (Wiley-VCH, 1996).
  4. R. Weaver, “Rediscovering polarized light microscopy,” Am Lab 35, 55–61 (2003).
  5. S. Ross, R. Newton, Y. M. Zhou, J. Haffegee, M. W. Ho, J. P. Bolton, and D. Knight, “Quantitative image analysis of birefringent biological material,” J. Microsc. 187, 62–67 (1997). [CrossRef]
  6. O. Arteaga, “Mueller matrix polarimetry of anisotropic chiral media,” Ph.D. thesis, University of Barcelona (2010).
  7. O. Arteaga and A. Canillas, “Analytic inversion of the Mueller-Jones polarization matrices for homogeneous media,” Opt. Lett. 35, 559–561 (2010). [CrossRef]
  8. J. Schellman and H. P. Jensen, “Optical spectroscopy of oriented molecules,” Chem. Rev. 87, 1359–1399 (1987). [CrossRef]
  9. R. Ossikovski, “Differential matrix formalism for depolarizing anisotropic media,” Opt. Lett. 36, 2330–2332 (2011). [CrossRef]
  10. O. Arteaga and B. Kahr, “Characterization of homogenous depolarizing media based on Mueller matrix differential decomposition,” Opt. Lett. 38, 1134–1136 (2013). [CrossRef]
  11. O. Arteaga, “Number of independent parameters in the Mueller matrix representation of homogeneous depolarizing media,” Opt. Lett. 38, 1131–1133 (2013). [CrossRef]
  12. E. Bernabeu and J. J. Gil, “An experimental device for the dynamic determination of Mueller matrices,” J. Opt. 16, 139–141 (1985). [CrossRef]
  13. K. Ichimoto, K. Shinoda, T. Yamamoto, and J. Kiyohara, “Photopolarimetric measurement system of Mueller matrix with dual rotating waveplates,” Publ. Nat. Ast. Obs. J. 9, 11–19 (2006).
  14. O. Arteaga, J. Freudenthal, B. Wang, and B. Kahr, “Mueller matrix polarimetry with four photoelastic modulators: theory and calibration,” Appl. Opt. 51, 6805–6817 (2012). [CrossRef]
  15. A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28, 616–618 (2003). [CrossRef]
  16. R. M. A. Azzam, “Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four stokes parameters of light,” Opt. Acta 29, 685–689 (1982). [CrossRef]
  17. D. Lara and C. Dainty, “Axially resolved complete Mueller matrix confocal microscopy,” Appl. Opt. 45, 1917–1930 (2006). [CrossRef]
  18. S. Alali and I. A. Vitkin, “Optimization of rapid Mueller matrix imaging of turbid media using four photoelastic modulators without mechanically moving parts,” Opt. Eng. 52, 103114 (2013). [CrossRef]
  19. J. Freudenthal and B. Wang, Hinds Instruments, Hillsboro, Oregon 97124 (personal communication, 2013).
  20. P. S. Hauge, “Mueller matrix ellipsometry with imperfect compensators,” J. Opt. Soc. Am. 68, 1519–1528 (1978). [CrossRef]
  21. J. J. Gil, “Método dinámico de determinación de parámetros de Stokes y matrices de Mueller por análisis de Fourier,” Master’s thesis (Universidad de Zaragoza, 1979).
  22. R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2, 148–150 (1978). [CrossRef]
  23. J. H. Freudenthal, E. Hollis, and B. Kahr, “Imaging chiroptical artifacts,” Chirality 21, S20–S27 (2009). [CrossRef]
  24. S. Ben Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved Mueller polarimeter using a microscope objective,” Phys. Stat. Sol. (a) 205, 743–747 (2008). [CrossRef]
  25. L. M. S. Ars, P. G. Ellingsen, and M. Kildemo, “Near infra-red Mueller matrix imaging system and application to retardance imaging of strain,” Thin Solid Films 519, 2737–2741 (2011). [CrossRef]
  26. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31, 6676–6683 (1992). [CrossRef]
  27. R. W. Collins and J. Koh, “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. A 16, 1997–2006 (1999). [CrossRef]
  28. Z. El-Hachemi, O. Arteaga, A. Canillas, J. Crusats, A. Sorrenti, S. Veintemillas-Verdaguer, and J. M. Ribo, “Achiral-to-chiral transition in benzil solidification: analogies with racemic conglomerates systems showing deracemization,” Chirality 25, 393–399 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited