OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: B121–B127

11th International Conference “Correlation Optics”: Propolis films for hybrid biomaterial-inorganic electronics and optoelectronics

Viktor V. Brus, Leonid J. Pidkamin, Maria I. Ilashchuk, and Pavlo D. Maryanchuk  »View Author Affiliations

Applied Optics, Vol. 53, Issue 10, pp. B121-B127 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (586 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the analysis of optical, polarimetric, and electrical properties of propolis films and hybrid biomaterial-inorganic heterojunctions based on them. It was shown that the material of the propolis films belongs to wide-bandgap optically active substances with the light-scattering centers, which possess complex optical properties. The values of the specific resistance ρP=1.9·107Ω·cm and dielectric constant εP=19.5 of the propolis film were determined from the spectral distribution of the real and imaginary components of its impedance at room temperature, respectively. The dominating current transport mechanisms through the hybrid bioinorganic heterojunction propolis/p-CdTe were established to be the interface-states-assisted generation–recombination within the depletion region via deep energy levels at forward bias as well as the leakage current through the shunt resistance at reverse bias.

© 2014 Optical Society of America

OCIS Codes
(160.4890) Materials : Organic materials
(250.2080) Optoelectronics : Polymer active devices
(310.3840) Thin films : Materials and process characterization
(160.5335) Materials : Photosensitive materials
(240.2130) Optics at surfaces : Ellipsometry and polarimetry

Original Manuscript: October 4, 2013
Revised Manuscript: December 7, 2013
Manuscript Accepted: January 17, 2014
Published: February 19, 2014

Viktor V. Brus, Leonid J. Pidkamin, Maria I. Ilashchuk, and Pavlo D. Maryanchuk, "11th International Conference “Correlation Optics”: Propolis films for hybrid biomaterial-inorganic electronics and optoelectronics," Appl. Opt. 53, B121-B127 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, and P. Alnot, “Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers,” J. Am. Chem. Soc. 115, 8716–8721 (1993). [CrossRef]
  2. V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, “Charge transport in organic semiconductors,” Chem. Rev. 107, 926–952 (2007). [CrossRef]
  3. L.-L. Chua, J. Zaumseil, J.-F. Chang, E. Ou, P. Ho, H. Sirringhaus, and R. H. Friend, “General observation of n-type field-effect behaviour in organic semiconductors,” Nature 434, 194–199 (2005). [CrossRef]
  4. B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger, and Z. Bao, “Electronic sensing of vapors with organic transistors,” Appl. Phys. Lett. 78, 2229–2231 (2001). [CrossRef]
  5. A. R. Brown, C. P. Jarrett, D. M. de Leeuw, and M. Matters, “Field-effect transistors made from solution-processed organic semiconductors,” Synth. Met. 88, 37–55 (1997). [CrossRef]
  6. P. Stakhira, V. Cherpak, D. Volynyuk, F. Ivastchyshyn, Z. Hotra, V. Tataryn, and G. Luka, “Characteristics of organic light emitting diodes with copper iodide as injection layer,” Thin Solid Films 518, 7016–7018 (2010). [CrossRef]
  7. S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107, 1324–1338 (2007). [CrossRef]
  8. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, “An inverted organic solar cell employing a sol–gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer,” Appl. Phys. Lett. 93, 221107 (2008). [CrossRef]
  9. M. Wright and A. Uddin, “Organic–inorganic hybrid solar cells: a comparative review,” Sol. Energy Mater. Sol. Cells 107, 87–111 (2012). [CrossRef]
  10. V. V. Brus, M. Zellmeier, X. Zhang, S. M. Greil, A. J. Tofflinger, J. Rappich, and N. H. Nickel, “Electrical and photoelectrical properties of P3HT/n-Si hybrid organic–inorganic heterojunction solar cells,” Org. Electron. 14, 3109–3116 (2013). [CrossRef]
  11. I. Willner, R. Baron, and B. Willner, “Integrated nanoparticle–biomolecule systems for biosensing and bioelectronics,” Biosens. Bioelectron. 22, 1841–1852 (2007). [CrossRef]
  12. M. Berggren and A. Richter-Dahlfors, “Organic bioelectronics,” Adv. Mater. 19, 3201–3213 (2007). [CrossRef]
  13. J. J. Davis, D. A. Morgan, C. L. Wrathmell, D. N. Axford, J. Zhao, and N. Wang, “Molecular bioelectronics,” J. Mater. Chem. 15, 2160–2174 (2005). [CrossRef]
  14. F. A. Tomás-Barberán, C. García-Viguera, P. Vit-Oliviera, F. Ferreres, and F. Tomás-Lorente, “Phytochemical evidence for the botanical origin of tropical propolis from Venezuela,” Photochemistry 34, 191–196 (1993). [CrossRef]
  15. F. Kheiri, R. E. Sabzi, E. Jannatdoust, E. Shojaeefar, and H. Sedghi, “A novel amperometric immunosensor based on acetone-extracted propolis for the detection of the HIV-1 p24 antigen,” Biosens. Bioelectron. 26, 4457–4463 (2011). [CrossRef]
  16. R. O. Orsi, J. M. Sforcin, V. L. M. Rall, S. R. C. Funari, L. Barbosa, and J. R. A. Fernandes, “Susceptibility profile of Salmonella against the antibacterial activity of propolis produced in two regions of Brazil,” J. Venom. Anim. Toxins incl. Trop. 11, 109–116 (2005). [CrossRef]
  17. P. I. Botushanov, G. I. Grigorov, and G. A. Aleksandrov, “A clinical study of a silicate toothpaste with extract from propolis,” Folia Med (Plovdiv). 43, 28–30 (2001).
  18. C. Brätter, M. Tregel, C. Liebenthal, and H. D. Volk, “Prophylactic effectiveness of propolis for immunostimulation: a clinical pilot study Forsch Komplementarmed,” Semicond. Sci. Technol. 6, 256–260 (1999).
  19. A. H. Banskota, Y. Tezuka, and S. Kadota, “Recent progress in pharmacological research of propolis,” Phytother Res. 15, 561–571 (2001).
  20. S. I. Drapak, I. T. Drapak, and Z. D. Kovalyuk, “Optical and electrical properties of propolis films,” Techn. Phys. 49, 1529–1530 (2004). [CrossRef]
  21. S. I. Drapak, A. P. Bakhtinov, S. V. Gavrylyuk, I. T. Drapak, and Z. D. Kovalyuk, “Structural and optical characterization of the propolis films,” Appl. Surf. Sci. 253, 279–282 (2006). [CrossRef]
  22. S. I. Drapak, A. P. Bakhtinov, I. T. Drapak, Z. D. Kovalyuk, and M. V. Tovarnitsky, “Optical and photoelectrical properties of propolis-layered semiconductor (p-InSe) heterojunction,” J. Optel. Advan. Mater. 7, 801–804 (2005).
  23. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).
  24. V. V. Brus, L. J. Pidkamin, S. L. Abashin, Z. D. Kovalyuk, P. D. Maryanchuk, and O. M. Chugai, “Optical constants and polarimetric properties of TiO2-MnO2 thin films,” Opt. Mater. 34, 1940–1945 (2012). [CrossRef]
  25. A. Arkhelyuk, L. Podkamen, and V. Glibka, “Characteristics investigations of surface and volumetrical scattering of the polarised radiation by a layer of oriented particles,” Proc. SPIE 5227, 219–224 (2003).
  26. O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, Yu. A. Ushenko, R. Jozwicki, and K. Patorski, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Optica Applicata 32, 603–612 (2002).
  27. O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarization visualization and selection of biotissue images,” Optica Applicata 32, 591–601 (2002).
  28. Yu. A. Ushenko, Yu. Ya. Tomka, and A. V. Dubolazov, “Complex degree of mutual anisotropy of extracellular matrix of biological tissues,” Opt. Spectrosc. 110, 814–819 (2011). [CrossRef]
  29. Y.-A. Ushenko, Y.-Y. Tomka, and A. V. Dubolazov, “Laser diagnostics of anisotropy in birefringent networks of biological tissues in different physiological conditions,” Quantum Electron. 41, 170–175 (2011). [CrossRef]
  30. V. V. Brus, “On the impedance spectroscopy of structures with a potential barrier,” Semiconductors 46, 1012–1015 (2012). [CrossRef]
  31. V. V. Brus, “On impedance spectroscopy analysis of nonideal heterojunctions,” Semicond. Sci. Technol. 27, 035024 (2012). [CrossRef]
  32. V. V. Brus, M. I. Ilashchuk, Z. D. Kovalyuk, P. D. Maryanchuk, and O. A. Parfenyuk, “Surface-barrier heterojunctions TiO2/CdZnTe,” Semicond. Sci. Technol. 28, 015004 (2013). [CrossRef]
  33. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley-Interscience, 2007).
  34. P. M. Gorley, Z. M. Grushka, V. P. Makhniy, O. G. Grushka, O. A. Chervinsky, P. P. Horley, Y.-V. Vorobiev, and J. Gonzalez-Hernandez, “Current transport mechanisms in n-InSe/p-CdTe heterojunctions,” Phys. Status Solidi C 5, 3622–3625 (2008). [CrossRef]
  35. V. V. Brus, M. I. Ilashchuk, Z. D. Kovalyuk, P. D. Maryanchuk, and K. S. Ulyanytsky, “Electrical and photoelectrical properties of photosensitive heterojunctions n-TiO2/p-CdTe,” Semicond. Sci. Technol. 26, 125006 (2011). [CrossRef]
  36. V. V. Brus, M. I. Ilashchuk, V. V. Khomyak, Z. D. Kovalyuk, P. D. Maryanchuk, and K. S. Ulyanytsky, “Electrical properties of anisotype heterojunctions n-CdZnO/p-CdTe,” Semiconductors 46, 1152–1157 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited