OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: B140–B146

Robustness properties of hill-climbing algorithm based on Zernike modes for laser beam correction

Ying Liu, Jianqiang Ma, Junjie Chen, Baoqing Li, and Jiaru Chu  »View Author Affiliations


Applied Optics, Vol. 53, Issue 10, pp. B140-B146 (2014)
http://dx.doi.org/10.1364/AO.53.00B140


View Full Text Article

Enhanced HTML    Acrobat PDF (820 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A modified hill-climbing algorithm based on Zernike modes is used for laser beam correction. The algorithm adopts the Zernike mode coefficients, instead of the deformable mirror actuators’ voltages in a traditional hill-climbing algorithm, as the adjustable variables to optimize the object function. The effect of the mismatches between the laser beam and the deformable mirror both in the aperture size and the center position was analyzed numerically and experimentally to test the robustness of the algorithm. Both simulation and experimental results show that the mismatches have almost no influence on the laser beam correction, unless the laser beam exceeds the effective aperture of the deformable mirror, which indicates the good robustness of the algorithm.

© 2014 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(220.1010) Optical design and fabrication : Aberrations (global)
(110.1080) Imaging systems : Active or adaptive optics

History
Original Manuscript: October 30, 2013
Revised Manuscript: January 23, 2014
Manuscript Accepted: January 27, 2014
Published: February 28, 2014

Citation
Ying Liu, Jianqiang Ma, Junjie Chen, Baoqing Li, and Jiaru Chu, "Robustness properties of hill-climbing algorithm based on Zernike modes for laser beam correction," Appl. Opt. 53, B140-B146 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-10-B140


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Rao, L. Zhu, X. J. Rao, C. L. Guan, D. H. Chen, S. Q. Chen, J. Lin, and Z. Z. Liu, “Performance of the 37-element solar adaptive optics for the 26  cm solar fine structure telescope at Yunnan Astronomical Observatory,” Appl. Opt. 49, G129–G135 (2010). [CrossRef]
  2. A. Guesalaga, B. Neichel, J. O’Neal, and D. Guzman, “Mitigation of vibrations in adaptive optics by minimization of closed-loop residuals,” Opt. Express 21, 10676–10796 (2013). [CrossRef]
  3. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. H. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15, 13731–13744 (2007). [CrossRef]
  4. N. Doble and D. R. Williams, “The application of MEMS technology for adaptive optics in vision science,” IEEE J. Sel. Top. Quantum Electron. 10, 629–635 (2004). [CrossRef]
  5. O. Azucena, J. Crest, S. Kotadia, W. Sullivan, X. D. Tao, M. Reinig, D. Gavel, S. Olivier, and J. Kubby, “Adaptive optics wide-field microscopy using direct wavefront sensing,” Opt. Lett. 36, 825–827 (2011). [CrossRef]
  6. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Nat. Acad. Sci. USA 99, 5788–5792 (2002). [CrossRef]
  7. T. A. Planchon, J. P. Rousseau, F. Burgy, and G. Cheriaux, “Adaptive wavefront correction on a 100  TW/10  Hz chirped pulse amplification laser and effect of residual wavefront on beam propagation,” Opt. Commun. 252, 222–228 (2005). [CrossRef]
  8. M. L. Gong, Y. T. Qiu, L. Huang, Q. Liu, P. Yan, and H. T. Zhang, “Beam quality improvement by joint compensation of amplitude and phase,” Opt. Lett. 38, 1101–1103 (2013). [CrossRef]
  9. P. Yang, W. Yang, Y. Liu, S. J. Hu, M. W. Ao, B. Xu, and W. H. Jiang, “19-element sensor-less adaptive optical system based on modified hill-climbing and genetic algorithms,” Proc. SPIE 6723, 31–37 (2007).
  10. T. Planchon, W. Amir, J. J. Field, C. G. Durfee, and J. A. Squier, “Adaptive correction of a tightly focused, high-intensity laser beam by use of a third-harmonic signal generated at an interface,” Opt. Lett. 31, 2214–2216 (2006). [CrossRef]
  11. S. P. Poland, A. J. Wright, and J. M. Girkin, “Evaluation of fitness parameters used in an iterative approach to aberration correction in optical sectioning microscopy,” Appl. Opt. 47, 731–736 (2008). [CrossRef]
  12. H. T. Ma, Q. Zhou, X. J. Xu, S. J. Du, and Z. J. Liu, “Full-field unsymmetrical beam shaping for decreasing and homogenizing the thermal deformation of optical element in a beam control system,” Opt. Express 19, A1037–A1050 (2011). [CrossRef]
  13. P. Piatrou and M. Roggemann, “Beaconless stochastic parallel gradient descent laser beam control: numerical experiments,” Appl. Opt. 46, 6831–6842 (2007). [CrossRef]
  14. S. Zommer, E. N. Ribak, S. G. Lipson, and J. Adler, “Simulated annealing in ocular adaptive optics,” Opt. Lett. 31, 939–941 (2006). [CrossRef]
  15. R. El-Agmy, H. Bulte, A. H. Greenaway, and D. T. Reid, “Adaptive beam profile control using a simulated annealing algorithm,” Opt. Express 13, 6085–6091 (2005). [CrossRef]
  16. P. Yang, M. W. Ao, Y. Liu, B. Xu, and W. H. Jiang, “Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients,” Opt. Express 15, 17051–17062 (2007). [CrossRef]
  17. Y. Liu, J. Q. Ma, B. Q. Li, and J. R. Chu, “Hill-climbing algorithm based on Zernike modes for wavefront sensor-less adaptive optics,” Opt. Eng. 52, 016601 (2013). [CrossRef]
  18. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett. 32, 5–7 (2007). [CrossRef]
  19. S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaumé, B. Viana, G. P. Aka, and D. Vivien, “Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW,” Opt. Mater. 22, 129–137 (2003). [CrossRef]
  20. J. Q. Ma, Y. Liu, T. He, B. Q. Li, and J. R. Chu, “Double drive modes unimorph deformable mirror for low-cost adaptive optics,” Appl. Opt. 50, 5647–5654 (2011). [CrossRef]
  21. P. Yang, Y. Ning, X. Lei, B. Xu, X. Li, L. Z. Dong, H. Yan, W. J. Liu, W. H. Jiang, L. Liu, C. Wang, X. B. Liang, and X. Tang, “Enhancement of the beam quality of nonuniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror,” Opt. Express 18, 7121–7130 (2010). [CrossRef]
  22. T. G. Bifano, P. Bierden, and S. A. Cornelissen, “MEMS deformable mirrors for space and defense applications,” Proc. SPIE 6959, 695914 (2008). [CrossRef]
  23. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited