OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: B172–B180

Spatial-frequency selection of complex degree of coherence of laser images of blood plasma in diagnostics and differentiation of pathological states of human organism of various nosology

A. G. Ushenko, P. O. Angelsky, M. Sidor, Yu. F. Marchuk, D. R. Andreychuk, and N. V. Pashkovskaya  »View Author Affiliations

Applied Optics, Vol. 53, Issue 10, pp. B172-B180 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (628 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The theoretical background of correlation and phase analysis of laser images of human blood plasma with the spatial-frequency selection of the manifestations of mechanisms of linear and circular birefringence of albumin and globulin is presented. The comparative results of measuring the coordinate distributions of the module of complex degree of coherence (CDC) of laser images of blood plasma taken from the patients of three groups—healthy patients (donors), the patients suffering from the rheumatoid arthritis, and those with stomach cancer (adenocarcinoma)—are shown. The values and ranges of change of the statistical (moments of the first–fourth orders), correlation (excess of autocorrelation functions), and fractal (slopes of approximating curves and dispersion of the extremes of logarithmic dependencies of power spectra) parameters of CDC coordinate distributions are studied. The objective criteria of diagnostics of the pathology and differentiation of the inflammation and oncological state are determined.

© 2014 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(260.5430) Physical optics : Polarization

Original Manuscript: November 20, 2013
Manuscript Accepted: January 8, 2014
Published: March 7, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

A. G. Ushenko, P. O. Angelsky, M. Sidor, Yu. F. Marchuk, D. R. Andreychuk, and N. V. Pashkovskaya, "Spatial-frequency selection of complex degree of coherence of laser images of blood plasma in diagnostics and differentiation of pathological states of human organism of various nosology," Appl. Opt. 53, B172-B180 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Wang and L.-H. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002). [CrossRef]
  2. O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. Mokhun, S. G. Hanson, C. Y. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012). [CrossRef]
  3. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007), paper PM 166.
  4. A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012). [CrossRef]
  5. A. Yu. Seteikin, “Monte Carlo analysis of the propagation of laser radiation in multilayer biomaterials,” Russ. Phys. J. 48, 280–284 (2005). [CrossRef]
  6. J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.
  7. S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, “Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation,” Appl. Opt. 44, 5463–5467 (2005). [CrossRef]
  8. S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, “Jones matrix imaging of biological samples using parallel-detecting polarization-sensitive Fourier domain optical coherence tomography,” Opt. Rev. 12, 146–148 (2005). [CrossRef]
  9. S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, “Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography,” Appl. Opt. 45, 1142–1147 (2006). [CrossRef]
  10. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287–291 (2004). [CrossRef]
  11. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002). [CrossRef]
  12. V. V. Tuchin, “A clear vision for laser diagnostics,” IEEE J. Select. Top. Quantum Electron. 13, 1621–1628 (2007). [CrossRef]
  13. A. G. Ushenko, “Laser polarimetry of polarization-phase statistical moments of the object field of optically anisotropic scattering layers,” Opt. Spectrosc. 91, 313–316 (2001). [CrossRef]
  14. O. V. Angel’skiĭ, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000). [CrossRef]
  15. A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000). [CrossRef]
  16. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 4, 9–38 (2011).
  17. O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005). [CrossRef]
  18. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” Pure Appl. Opt. 7, 941–951 (1998). [CrossRef]
  19. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A. 312, 263–267 (2003).
  20. J. Tervo, T. Setala, and A. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11, 1137–1143 (2003). [CrossRef]
  21. J. Ellis and A. Dogariu, “Complex degree of mutual polarization,” Opt. Lett. 29, 536–538 (2004). [CrossRef]
  22. O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999). [CrossRef]
  23. Y. O. Ushenko, Y. Ya. Tomka, I. Z. Misevitch, V. V. Istratiy, and O. I. Telenga, “Complex degree of mutual anisotropy of biological liquid crystals nets,” Opt. Eng. 50, 039001 (2011). [CrossRef]
  24. Yu. A. Ushenko, Y. Y. Tomka, and A. V. Dubolazov, “Complex degree of mutual anisotropy of extracellular matrix of biological tissues,” Opt. Spectrosc. 110, 814–819 (2011). [CrossRef]
  25. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).
  26. J. W. Goodman, Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited