OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: B181–B191

Laser polarization autofluorescence of endogenous porphyrins of optically anisotropic biological tissues and fluids in diagnostics of necrotic and pathological changes of human organs

Yu. A. Ushenko, A. D. Arkhelyuk, M. I. Sidor, V. T. Bachynskyi, and O. Yu. Wanchuliak  »View Author Affiliations


Applied Optics, Vol. 53, Issue 10, pp. B181-B191 (2014)
http://dx.doi.org/10.1364/AO.53.00B181


View Full Text Article

Enhanced HTML    Acrobat PDF (1122 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This research presents the results of investigation of laser polarization fluorescence of biological layers (histological sections, cytological smears). The polarization structural properties of autofluorescent images of human biological tissues layers and fluids were found and investigated. A model describing the formation of polarizationally heterogeneous images of optically anisotropic biological layers is suggested. On this basis, the practical method of polarization-variable autofluorescence is analytically substantiated and experimentally tested. The efficiency of applying this method to various tasks of medical diagnostics is analyzed: objectification of histological conclusions, defining and differentiating of various forms of cancer (dysplasia—microinvasive cancer) of the cervix uteri, and forensic medical express-differentiation of cause of death. The objective criteria (statistical moments) of differentiation of autofluorescent images of histological sections of myocardium biopsy and endometrium and cytological smears of its mucous tunic are defined. The operational characteristics (sensitivity, specificity, accuracy) of this method are determined concerning the positions of probative medicine, and the clinical efficiency of the technique is demonstrated.

© 2014 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

History
Original Manuscript: November 18, 2013
Revised Manuscript: January 23, 2014
Manuscript Accepted: January 23, 2014
Published: March 11, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Yu. A. Ushenko, A. D. Arkhelyuk, M. I. Sidor, V. T. Bachynskyi, and O. Yu. Wanchuliak, "Laser polarization autofluorescence of endogenous porphyrins of optically anisotropic biological tissues and fluids in diagnostics of necrotic and pathological changes of human organs," Appl. Opt. 53, B181-B191 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-10-B181


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Huard, Polarization of Light (Wiley, 1997).
  2. D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003).
  3. M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3991, 210–216 (2000). [CrossRef]
  4. A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012). [CrossRef]
  5. O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999). [CrossRef]
  6. S. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996). [CrossRef]
  7. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. I. Mokhun, S. G. Hanson, C. Yu. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012). [CrossRef]
  8. J. Qi, M. Ye, M. Singh, N. T. Clancy, and D. S. Elson, “Narrow band 3×3 Mueller polarimetric endoscopy,” Biomed. Opt. Express 4, 2433–2449 (2013). [CrossRef]
  9. A. G. Ushenko and V. P. Pishak, “Laser polarimetry of biological tissue: principles and applications,” in Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, V. V. Tuchin, ed. (Kluwer Academic, 2004), Vol. 1, pp. 93–138.
  10. O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, V. P. Pishak, and A. P. Peresunko, “Statistical, correlation and topological approaches in diagnostics of the structure and physiological state of birefringent biological tissues,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), pp. 283–322.
  11. Y. A. Ushenko, T. M. Boychuk, V. T. Bachynsky, and O. P. Mincer, “Diagnostics of structure and physiological state of birefringent biological tissues: statistical, correlation and topological approaches,” in Handbook of Coherent-Domain Optical Methods (Springer, 2013), pp. 107–148.
  12. Yu. A. Ushenko, G. B. Bodnar, and G. D. Koval, “Classifying optical properties of surface-and bulk-scattering biological layers with polarization singular states,” J. Innov. Opt. Health Sci. 6, 1350018 (2013). [CrossRef]
  13. Yu. A. Ushenko, “Investigation of formation and interrelations of polarization singular structure and Mueller-matrix images of biological tissues and diagnostics of their cancer changes,” J. Biomed. Opt. 16, 066006 (2011). [CrossRef]
  14. Yu. A. Ushenko, “Statistical structure of polarization-inhomogeneous images of biotissues with different morphological structures,” Ukr. J. Phys. Opt. 6, 63–70 (2005). [CrossRef]
  15. Yu. A. Ushenko, A. P. Peresunko, and B. A. Baku, “A new method of Mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma,” Adv. Opt. Technol. 2010, 952423 (2010).
  16. Yu. A. Ushenko, O. I. Telenga, A. P. Peresunko, and O. K. Numan, “New parameter for describing and analyzing the optical-anisotropic properties of biological tissues,” J. Innov. Opt. Health Sci. 4, 463–475 (2011). [CrossRef]
  17. Yu. A. Ushenko, “The feasibilities of using the statistical, fractal and singular processing of hominal blood plasma phase images during the diagnostics and differentiation of mammary gland pathological states,” J. Innov. Opt. Health Sci. 5, 1150001 (2012). [CrossRef]
  18. S. Andersson-Engels, C. Klinteberg, K. Svanberg, and S. Svanberg, “In vivo fluorescence imaging for tissue diagnostics,” Phys. Med. Biol. 42, 815–824 (1997). [CrossRef]
  19. R. R. Alfano, B. B. Das, J. Cleary, R. Prudente, and E. J. Celmer, “Light sheds light on cancer—distinguishing malignant tumors from benign tissues and tumors,” Bull. NY Acad. Med. 67, 143–150 (1991).
  20. M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandchamps, A. Cortesse, P. Teillac, A. Le Duc, and S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996). [CrossRef]
  21. A. G. Bohorfoush, “Tissue spectroscopy for gastrointestinal diseases,” Endoscopy 28, 372–380 (1996).
  22. B. Chwirot, W. Jedrzejczyk, S. Chwirot, Z. Michniewicz, and J. Redzinski, “Tissue spectroscopy. New generation of optical methods for cancer detection,” Pol. Merkuriusz. Lek. 5, 355–358 (1996).
  23. M. P. L. Bard, A. Amelink, M. Skurichina, H. V. Noordhoek, R. P. W. Duin, H. J. C. M. Sterenborg, H. C. Hoogsteden, and J. G. J. V. Aerts, “Optical spectroscopy for the classification of malignant lesions of the bronchial tree,” Chest 129, 995–1001 (2006). [CrossRef]
  24. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984). [CrossRef]
  25. J. Y. Qu, “Real time calibrated fluorescence imaging of tissue in vivo by using the combination of fluorescence and cross-polarized reflection” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), pp. 485–487.
  26. N. Ghosh, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Depth-resolved fluorescence measurement in a layered turbid medium by polarized fluorescence spectroscopy,” Opt. Lett. 30, 162–164 (2005). [CrossRef]
  27. L. V. Kakturskiĭ, “Clinical morphology of acute coronary syndrome,” Arkh Patol. 69, 16–19 (2007).
  28. C. Basso, F. Calabrese, D. Corrado, and G. Thiene, “Postmortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings,” Cardiovasc. Res. 50, 290–300 (2001). [CrossRef]
  29. M. D. Pérez-Cárceles, J. Noguera, J. L. Jiménez, P. Martínez, A. Luna, and E. Osuna, “Diagnostic efficacy of biochemical markers in diagnosis postmortem of ischaemic heart disease,” Forensic Sci. Int. 142, 1–7 (2004). [CrossRef]
  30. F. Martínez Díaz, M. Rodríguez-Morlensín, M. D. Pérez-Cárceles, J. Noguera, A. Luna, and E. Osuna, “Biochemical analysis and immunohistochemical determination of cardiac troponin for the postmortem diagnosis of myocardial damage,” Histol. Histopathol. 20, 475–481 (2005).
  31. S. N. Savenkov, V. V. Marienko, E. A. Oberemok, and O. I. Sydoruk, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 605–607 (2006). [CrossRef]
  32. R. Stroka, R. Baumgartner, A. Buser, C. Ell, D. Jocham, and E. Unsold, “Laser assisted detection of endogenous porphyrin in malignant diseases,” Proc. SPIE 1641, 99–106 (1991). [CrossRef]
  33. M.-A. D’Hallewin, A. R. Kamuhabwa, T. Roskams, P. A. M. De Witte, and L. Baert, “Hypericin-based fluorescence diagnosis of bladder carcinoma,” BJU Int. 89, 760–763 (2002). [CrossRef]
  34. M. A. D’Hallewin, L. Bezdetnaya, and F. Guillemin, “Fluorescence detection of bladder cancer: a review,” Eur. Urol. 42, 417–425 (2002). [CrossRef]
  35. L. D. Cassidy, “Basic concepts of statistical analysis for surgical research,” J. Surg. Res. 128, 199–206 (2005). [CrossRef]
  36. C. S. Davis, Statistical Methods of the Analysis of Repeated Measurements (Springer-Verlag, 2002).
  37. A. Petrie and C. Sabin, Medical Statistics at a Glance (Blackwell, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited