OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: B223–B230

Bottlenecks of the wavefront sensor based on the Talbot effect

Dmytro Podanchuk, Andrey Kovalenko, Vitalij Kurashov, Myhaylo Kotov, Andrey Goloborodko, and Volodymyr Danko  »View Author Affiliations

Applied Optics, Vol. 53, Issue 10, pp. B223-B230 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Physical constraints and peculiarities of the wavefront sensing technique, based on the Talbot effect, are discussed. The limitation on the curvature of the measurable wavefront is derived. The requirements to the Fourier spectrum of the periodic mask are formulated. Two kinds of masks are studied for their performance in the wavefront sensor. It is shown that the boundary part of the mask aperture does not contribute to the initial data for wavefront restoration. It is verified by experiment and computer simulation that the performance of the Talbot sensor, which meets established conditions, is similar to that of the Shack–Hartmann sensor.

© 2014 Optical Society of America

OCIS Codes
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(110.1220) Imaging systems : Apertures
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing

Original Manuscript: November 18, 2013
Revised Manuscript: January 30, 2014
Manuscript Accepted: February 13, 2014
Published: March 18, 2014

Dmytro Podanchuk, Andrey Kovalenko, Vitalij Kurashov, Myhaylo Kotov, Andrey Goloborodko, and Volodymyr Danko, "Bottlenecks of the wavefront sensor based on the Talbot effect," Appl. Opt. 53, B223-B230 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Roddier, Adaptive Optics in Astronomy (Cambridge University, 1999).
  2. M. Rocktäschel and H. J. Tiziani, “Limitations of the Shack-Hartmann sensor for testing optical aspherics,” Opt. Laser Technol. 34, 631–637 (2002). [CrossRef]
  3. A. A. Goloborodko, V. I. Grygoruk, M. M. Kotov, V. N. Kurashov, D. V. Podanchuk, and N. S. Sutyagina, “Determination of local surface defects using a Shack-Hartmann wavefront sensor,” Ukr. J. Phys. 53, 946–951 (2008).
  4. O. Azucena, J. Crest, S. Kotadia, W. Sullivan, X. Tao, M. Reinig, D. Gavel, S. Olivier, and J. Kubby, “Adaptive optics wide-field microscopy using direct wavefront sensing,” Opt. Lett. 36, 825–827 (2011). [CrossRef]
  5. V. V. Molebny, V. N. Kurashov, D. V. Podanchuk, A. V. Kovalenko, I. G. Pallikaris, and L. P. Naoumidis, “Aberration mapping for sight correction,” Proc. SPIE 3246, 238–248 (1998). [CrossRef]
  6. S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16, 7748–7755 (2008). [CrossRef]
  7. R. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC Press, 2010).
  8. D. V. Podanchuk, V. P. Danko, M. M. Kotov, J.-Y. Son, and Y.-J. Choi, “Extended-range Shack-Hartmann wavefront sensor with nonlinear holographic lenslet array,” Opt. Eng. 45, 053605 (2006). [CrossRef]
  9. P. Latimer and R. F. Crouse, “Talbot effect reinterpreted,” Appl. Opt. 31, 80–89 (1992). [CrossRef]
  10. N. Salama, D. Patrignani, L. De Pasquale, and E. Sicre, “Wavefront sensor using the Talbot effect,” Opt. Laser Technol. 31, 269–272 (1999). [CrossRef]
  11. C. Siegel, F. Loewenthal, and J. E. Balmer, “A wavefront sensor based on the fractional Talbot effect,” Opt. Commun. 194, 265–275 (2001). [CrossRef]
  12. R. Sekine, T. Shibuya, K. Ukai, S. Komatsu, M. Hattori, T. Mihashi, N. Nakazawa, and Y. Hirihara, “Measurement of wavefront aberration of human eye using Talbot image of two-dimensional grating,” Opt. Rev. 13, 207–211 (2006). [CrossRef]
  13. D. Podanchuk, V. Kurashov, A. Goloborodko, V. Dan’ko, M. Kotov, and N. Goloborodko, “Wavefront sensor based on the Talbot effect with the precorrected holographic grating,” Appl. Opt. 51, C125–C132 (2012). [CrossRef]
  14. D. V. Podanchuk, A. A. Goloborodko, and M. M. Kotov, “Features of the wavefront sensor based on the Talbot effect,” in Proceedings of the International Conference on Advanced Optoelectronics & Lasers (CAOL), O. V. Shulika and I. A. Sukhoivanov, eds. (IEEE, 2013), pp. 337–339.
  15. P. Zhou and J. H. Burge, “Analysis of wavefront propagation using the Talbot effect,” Appl. Opt. 49, 5351–5359 (2010). [CrossRef]
  16. C. Zhang, W. Zhang, F. Li, J. Wang, and S. Teng, “Talbot effect of quasi-periodic grating,” Appl. Opt. 52, 5083–5087 (2013). [CrossRef]
  17. J. F. Barrera, R. Henao, Z. Jaroszewicz, and A. Kolodziejczyk, “Talbot effect for periodical objects limited by finite apertures: a new interpretation,” Optik 116, 144–148 (2005). [CrossRef]
  18. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  19. S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack-Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–336 (2006). [CrossRef]
  20. L. Lundström and P. Unsbo, “Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils,” J. Opt. Soc. Am. A 24, 569–577 (2007). [CrossRef]
  21. C. E. Campbell, “Matrix method to find a new set of Zernike coefficients from an original set when the aperture radius is changed,” J. Opt. Soc. Am. A 20, 209–217 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited