OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: B237–B241

Ultrasmooth metal nanolayers for plasmonic applications: surface roughness and specific resistivity

Tomasz Stefaniuk, Piotr Wróbel, Paweł Trautman, and Tomasz Szoplik  »View Author Affiliations


Applied Optics, Vol. 53, Issue 10, pp. B237-B241 (2014)
http://dx.doi.org/10.1364/AO.53.00B237


View Full Text Article

Enhanced HTML    Acrobat PDF (381 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The future of plasmonic devices depends on effective reduction of losses of surface plasmon-polariton waves propagating along metal–dielectric interfaces. Energy dissipation is caused by resistive heating at the skin-deep-thick outer layer of metal and scattering of surface waves on rough metal–dielectric interfaces. Fabrication of noble metal nanolayers with a smooth surface still remains a challenge. In this paper, Ag layers of 10, 30, and 50 nm thickness deposited directly on fused-silica substrates and with a 1 nm wetting layer of Ge, Ti, and Ni are examined using an atomic-force microscope and four-probe resistivity measurements. In the case of all three wetting layers, the specific resistivity of silver film decreases as the thickness increases. The smallest, equal 0.4 nm root mean squared roughness of Ag surface of 10 nm thickness is achieved for Ge interlayer; however, due to Ge segregation the specific resistivity of silver film in Ag/Ge/SiO2 structures is about twice higher than that in Ag/Ti/SiO2 and Ag/Ni/SiO2 sandwiches.

© 2014 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.3900) Materials : Metals
(240.0240) Optics at surfaces : Optics at surfaces
(240.5770) Optics at surfaces : Roughness
(240.6680) Optics at surfaces : Surface plasmons
(310.0310) Thin films : Thin films

History
Original Manuscript: January 15, 2014
Revised Manuscript: February 11, 2014
Manuscript Accepted: February 12, 2014
Published: March 21, 2014

Citation
Tomasz Stefaniuk, Piotr Wróbel, Paweł Trautman, and Tomasz Szoplik, "Ultrasmooth metal nanolayers for plasmonic applications: surface roughness and specific resistivity," Appl. Opt. 53, B237-B241 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-10-B237


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Fuchs, “The conductivity of thin metallic films according to the electron theory of metals,” Proc. Cambridge Philos. Soc. 34, 100–108 (1938). [CrossRef]
  2. E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1, 1–42 (1952). [CrossRef]
  3. U. Jacob, J. Vancea, and H. Hoffmann, “Surface-roughness contributions to the electrical resistivity of polycrystalline metal films,” Phys. Rev. B 41, 11852–11857 (1990). [CrossRef]
  4. A. F. Mayadas, M. Shatzkes, and J. F. Janak, “Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces,” Appl. Phys. Lett. 14, 345–347 (1969). [CrossRef]
  5. A. F. Mayadas and M. Shatzkes, “Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces,” Phys. Rev. B 1, 1382 (1970). [CrossRef]
  6. M. Mayy, G. Zhu, E. Mayy, A. Webb, and M. A. Noginov, “Low temperature studies of surface plasmon polaritons in silver films,” J. Appl. Phys. 111, 094103 (2012). [CrossRef]
  7. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006). [CrossRef]
  8. J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. USA 101, 17930–17935 (2004). [CrossRef]
  9. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009). [CrossRef]
  10. L. J. van der Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Res. Rep. 13, 1–9 (1958).
  11. T. Stefaniuk, P. Wróbel, E. Górecka, and T. Szoplik, “Optimum temperature for deposition of ultrasmooth silver nanolayers,” Nanoscale Res. Lett, in press (2014).
  12. V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009). [CrossRef]
  13. W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18, 5124–5134 (2010). [CrossRef]
  14. P. Melpignano, C. Cioarec, R. Clergereaux, N. Gherardi, C. Villeneuve, and L. Datas, “E-beam deposited ultra-smooth silver thin film on glass with different nucleation layers: an optimization study for OLED micro-cavity application,” Org. Electron. 11, 1111–1119 (2010). [CrossRef]
  15. C. Cioarec, P. Melpignano, N. Gherardi, R. Clergereaux, and C. Villeneuve, “Ultrasmooth silver thin film electrodes with high polar liquid wettability for OLED microcavity application,” Langmuir 27, 3611–3617 (2011). [CrossRef]
  16. D. Flötotto, Z. M. Wang, L. P. H. Jeurgens, E. Bischoff, and E. J. Mittemeijer, “Effect of adatom surface diffusivity on microstructure and intrinsic stress evolutions during Ag film growth,” J. Appl. Phys. 112, 043503 (2012). [CrossRef]
  17. H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010). [CrossRef]
  18. S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 253003 (2006). [CrossRef]
  19. R. K. Aithal, S. Yenamandra, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Electroless copper deposition on silicon with titanium seed layer,” Mater. Chem. Phys. 98, 95–102 (2006). [CrossRef]
  20. S.-C. Wu, W.-H. Huang, and C.-M. Tsai, “Fabrication and application of copper sub-microdoughnut with electroplating method on patterned nickel template,” J. Electrochem. Soc. 157, P59–P62 (2010). [CrossRef]
  21. L. Ke, S. C. Lai, H. Liu, C. K. N. Peh, B. Wang, and J. H. Teng, “Ultrasmooth silver thin film on PEDOT:PSS nucleation layer for extended surface plasmon propagation,” ACS Appl. Mater. Interfaces 4, 1247–1253 (2012). [CrossRef]
  22. T. Stefaniuk, G. Nowak, and R. Kotyński, “Effect of surface roughness on sub-wavelength imaging with layered metamaterial optical elements,” Proc. SPIE 8070, 807010 (2011). [CrossRef]
  23. Shivanand, A. Ludwig, and K. J. Webb, “Impact of surface roughness on the effective dielectric constants and subwavelength image resolution of metal–insulator stack lenses,” Opt. Lett. 37, 4317–4319 (2012).
  24. M. Stolarek, A. Pastuszczak, P. Wrobel, T. Stefaniuk, and R. Kotynski, “Linear sub-diffraction spatial filtering with plasmonic materials,” in Proceedings of 15th International Conference on Transparent Optical Networks (ICTON), 2013.
  25. R. Kotyński, H. Baghdasaryan, T. Stefaniuk, A. Pastuszczak, M. Marciniak, A. Lavrinenko, K. Panajotov, and T. Szoplik, “Sensitivity of imaging properties of metal-dielectric layered flat lens to fabrication inaccuracies,” Opto-Electron. Rev. 18, 446–457 (2010). [CrossRef]
  26. C. Durkan and M. E. Welland, “Size effects in the electrical resistivity of polycrystalline nanowires,” Phys. Rev. B 61, 14215–14218 (2000). [CrossRef]
  27. J. M. Camacho and A. I. Oliva, “Morphology and electrical resistivity of metallic nanostructures,” Microelectron. J. 36, 555–558 (2005). [CrossRef]
  28. F. Lacy, “Developing a theoretical relationship between electrical resistivity, temperature, and film thickness for conductors,” Nanoscale Res. Lett. 6, 636 (2011). [CrossRef]
  29. J. S. Chawla, F. Gstrein, K. P. O’Brien, J. S. Clarke, and D. Gall, “Electron scattering at surfaces and grain boundaries in Cu thin films and wires,” Phys. Rev. B 84, 235423 (2011). [CrossRef]
  30. A. L. Wachs, T. Miller, and T.-C. Chiang, “Evidence for germanium segregation on thin films of Ag on Ge(111),” Phys. Rev. B 33, 8870–8873 (1986). [CrossRef]
  31. C. H. Gan and G. Gbur, “Extraordinary optical transmission through multi-layered systems of corrugated metallic thin films,” Opt. Express 17, 20553–20566 (2009). [CrossRef]
  32. P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by a concentrically corrugated silver film without a hole,” Phys. Rev. Lett. 102, 183902 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited