OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 11 — Apr. 10, 2014
  • pp: 2273–2282

Ground-based airglow imaging interferometer. Part 2: forward model and inverse method

Yuanhe Tang, Xiaodong Duan, Haiyang Gao, Ouyang Qu, Qijie Jia, Xiangang Cao, Shenni Wei, and Rui Yang  »View Author Affiliations

Applied Optics, Vol. 53, Issue 11, pp. 2273-2282 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1382 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ground-based airglow imaging interferometer (GBAII) observes the nighttime airglow of the O2(01) 867.7 nm line, peaked at 94 km altitude, to measure the upper atmospheric wind and temperature field. Its forward model, a code package in interactive data language (IDL), is developed to simulate the expected imaging interference fringes. It includes eight modules to simulate the light source, the atmospheric radiation transmission, the wide-angle Michelson interferometer, the interference filter, the optical system decay function, the responsivity, the imaging CCD, and the noises. The inverse method is also developed for obtaining the rest phase calibration, temperature, and wind. By means of both theoretical tools, we carry out a comparison of theoretical results with a field observation case. The apparent quantities J1p from the forward model has the deviation of 1.5%–2.5% compared with that from the observation image. The temperature falls mainly in the range of 167–196 K with the precision of 2 K. The zonal and meridional winds are mainly in the region of 5.1 to 46.5m/s and 12.5 to 48.3m/s respectively, with errors of 13.2 to 21.5m/s. The consistent trends between the observation results and standard models (MSISE90 and HWM93) suggest that the forward model and inverse method are suitable for GBAII.

© 2014 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(280.4991) Remote sensing and sensors : Passive remote sensing
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: September 23, 2013
Manuscript Accepted: February 20, 2014
Published: April 2, 2014

Yuanhe Tang, Xiaodong Duan, Haiyang Gao, Ouyang Qu, Qijie Jia, Xiangang Cao, Shenni Wei, and Rui Yang, "Ground-based airglow imaging interferometer. Part 2: forward model and inverse method," Appl. Opt. 53, 2273-2282 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. L. Hilliard and G. G. Shepherd, “Wide-angle Michelson interferometer for measuring Doppler line widths,” J. Opt. Soc. Am. 56, 362–368 (1966). [CrossRef]
  2. G. G. Shepherd, G. Thuillier, W. Gault, B. Solheim, C. Hersom, J. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. Cogger, D.-L. Desaulniers, and W. Evans, “WINDII: the wind imaging interferometer on the upper atmosphere research satellite,” J. Geophys Res. 98, 10725–10750 (1993). [CrossRef]
  3. G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. R. Wimperis, “WAMDII: wide-angle Michelson Doppler imaging interferometer for Spacelab,” Appl. Opt. 24, 1571–1584 (1985). [CrossRef]
  4. G. G. Shepherd, I. C. McDade, W. A. Gault, Y. J. Rochon, A. Scott, N. Rowlands, and G. Buttner, “The stratospheric wind interferometer for transport studies (SWIFT),” Adv. Space Res. 27, 1071–1079 (2001). [CrossRef]
  5. P. Rahnama, Y. J. Rochon, I. C. McDade, G. G. Shepherd, W. A. Gault, and A. Scott, “Satellite measurement of stratospheric winds and ozone using Doppler Michelson interferometry. Part I: instrument model and measurement simulation,” J. Atmos. Ocean. Technol. 23, 753–769 (2006). [CrossRef]
  6. W. E. Ward, W. A. Gault, G. G. Shepherd, and N. Rowlands, “Waves Michelson interferometer: a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents,” Proc. SPIE 4540, 100–111 (2001). [CrossRef]
  7. J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995). [CrossRef]
  8. C. M. Zhang, H. C. Zhu, and B. C. Zhao, “The tempo-spatially modulated polarization atmosphere Michelson interferometer,” Opt. Express 19, 9626–9635 (2011). [CrossRef]
  9. J. A. Langille, W. E. Ward, A. Scott, and D. L. Arsenault, “Measurement of two-dimensional Doppler wind fields using a field widened Michelson interferometer,” Appl. Opt. 52, 1617–1628 (2013). [CrossRef]
  10. H. Y. Gao, Y. H. Tang, D. X. Hua, L. Qing, and C. Zhu, “Modified super-wide-angle Sagnac imaging interferometer based on LCoS for atmospheric wind measurement,” J. Quant. Spectrosc. Radiat. Transfer 112, 268–276 (2011). [CrossRef]
  11. H. Y. Gao, D. X. Hua, Y. H. Tang, X. G. Cao, H. C. Liu, and W. L. Jia, “Wide angle Michelson interferometer with large air gap based on LCoS,” Opt. Commun. 292, 36–41 (2013). [CrossRef]
  12. Y. H. Tang, R. X. Zhang, H. Y. Gao, K. Liu, G. X. Zhao, X. S. Yang, Q. Li, Y. Liang, N. Ye, H. C. Liu, and S. L. Liu, “Partially light-controlled imaging system based on high temperature poly-silicon thin film transistor-liquid crystal display,” Opt. Express 18, 10616–10626 (2010). [CrossRef]
  13. Y. H. Tang, X. G. Cao, H. C. Liu, G. G. Shepherd, S. L. Liu, H. Y. Gao, X. S. Yang, Y. Wu, and S. W. Wang, “Partially light-controlled imager based on liquid crystal plate and image intensifier for aurora and airglow measurement,” Appl. Opt. 51, 1968–1975 (2012). [CrossRef]
  14. C. R. Englert, D. D. Babcock, and J. M. Harlander, “Doppler asymmetric spatial heterodyne spectroscopy (DASH): concept and experimental demonstration,” Appl. Opt. 46, 7297–7307 (2007). [CrossRef]
  15. G. G. Shepherd, G. Thuillier, Y.-M. Cho, M.-L. Duboin, W. F. J. Evans, W. A. Gault, C. Hersom, D. J. W. Kendall, C. Lathuillère, R. P. Lowe, I. C. McDade, Y. J. Rochon, M. G. Shepherd, B. H. Solheim, D. Y. Wang, and W. E. Ward, “The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective,” Rev. Geophys. 50, RG2007 (2012). [CrossRef]
  16. R. H. Wiens, S. P. Zhang, R. N. Peterson, and G. G. Shepherd, “MORTI: a mesopause oxygen rotational temperature imager,” Planet. Space Sci. 39, 1363–1375 (1991). [CrossRef]
  17. S. I. Sargoytchev, S. Brown, B. H. Solheim, Y. M. Cho, G. G. Shepherd, and M. J. Lopez-Gonzalez, “Spectral airglow temperature imager (SATI): a ground-based instrument for the monitoring of mesosphere temperature,” Appl. Opt. 43, 5712–5721 (2004). [CrossRef]
  18. H. Y. Gao, Y. H. Tang, D. X. Hua, H. C. Liu, X. G. Cao, X. D. Duan, Q. J. Jia, O. Y. Qu, and Y. Wu, “Ground-based airglow imaging interferometer. Part 1: instrument and observation” Appl. Opt. 52, 8650–8660 (2013). [CrossRef]
  19. H. Y. Gao, Y. H. Tang, D. X. Hua, and H. C. Liu, “Study on the wide-angle Michelson interferometer with large air gap,” Appl. Opt. 50, 5655–5661 (2011). [CrossRef]
  20. S. P. Zhang, R. H. Wrens, and G. G. Shepherd, “Gravity waves from O2 nightglow during the AIDA’89 campaign II: numerical modeling of the emission rate/temperature ratio,” J. Atmos. Sol. Terr. Phys. 55, 377–395 (1993). [CrossRef]
  21. M. N. M. Rao, G. S. N. Murty, and V. C. Jain, “Altitude of peak emission of (Ol) 5577 A in the lower thermosphere: Chapman versus Barth mechanisms,” J. Atmos. Sol. Terr. Phys. 44, 559–566 (1982). [CrossRef]
  22. H. P. Wu, “Research into theoretical calculation method on engineering of transmittance of infrared radiation (in Chinese),” Opt. Precis. Eng. 6, 35–43 (1998).
  23. H. Chen, Infrared Physics (in Chinese) (National Defence Industrial, 1985).
  24. K. Shiokawa, Y. Otsuka, S. Suzuki, T. Katoh, Y. Katoh, M. Satoh, T. Ogawa, H. Takahashi, D. Gobbi, T. Nakamura, B. P. Williams, C.-Y. She, M. Taguchi, and T. Shimomai, “Development of airglow temperature photometers with cooled-CCD detectors,” Earth Planets Space 59, 585–599 (2007).
  25. D. Y. Wang, Y. J. Rochon, S. P. Zhang, W. E. Ward, R. H. Wiens, D. Y. Liang, W. A. Gault, B. H. Solheim, and G. G. Shepherd, “Airglow intensity variations induced by gravity waves. Part 2: comparisons with observations,” J. Atmos. Sol. Terr. Phys. 63, 47–60 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited