OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 11 — Apr. 10, 2014
  • pp: 2317–2323

Improvement in the synchronization between the radio frequency signal and the image detector in an acousto-optic tunable filter imaging spectrometer

Huijie Zhao, Chongchong Li, Ying Zhang, and Zefu Xu  »View Author Affiliations


Applied Optics, Vol. 53, Issue 11, pp. 2317-2323 (2014)
http://dx.doi.org/10.1364/AO.53.002317


View Full Text Article

Enhanced HTML    Acrobat PDF (594 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An improved synchronization between the radio frequency (RF) signal and the image detector in an acousto-optic tunable filter (AOTF) imaging spectrometer is proposed to optimize power consumption and eliminate image smear. The RF signal is controlled on and off alternately to match the exposure of the image sensor. This scheme reduces the RF power and rejects the light illumination on the image sensor in the interval of charge transfer. An experiment using a visible AOTF, a frame transfer charge-coupled device camera, and an incandescent lamp is conducted for demonstration. The average RF power decreases 7.6%, and the image smear is eliminated.

© 2014 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(230.1040) Optical devices : Acousto-optical devices
(300.6190) Spectroscopy : Spectrometers
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Optical Devices

History
Original Manuscript: February 4, 2014
Revised Manuscript: March 4, 2014
Manuscript Accepted: March 4, 2014
Published: April 4, 2014

Citation
Huijie Zhao, Chongchong Li, Ying Zhang, and Zefu Xu, "Improvement in the synchronization between the radio frequency signal and the image detector in an acousto-optic tunable filter imaging spectrometer," Appl. Opt. 53, 2317-2323 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-11-2317


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Romier, J. Selves, and J. Gastellu-Etchegorry, “Imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 69, 2859–2867 (1998). [CrossRef]
  2. Y. Inoue and J. Penuelas, “An AOTF-based hyperspectral imaging system for field use in ecophysiological and agricultural applications,” Int. J. Remote Sens. 22, 3883–3888 (2001). [CrossRef]
  3. V. Alchanatis, L. Ridel, A. Hetzroni, and L. Yaroslavsky, “Weed detection in multi-spectral images of cotton fields,” Comput. Eletron. Agric. 47, 243–260 (2005). [CrossRef]
  4. D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33, 7412–7424 (1994). [CrossRef]
  5. D. A. Glenar, D. L. Blaney, and J. J. Hillman, “AIMS: acousto-optic imaging spectrometer for spectral mapping of solid surfaces,” Acta Astronaut. 52, 389–396 (2003).
  6. J. Vila, J. Calpea, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11, 85–98 (2005). [CrossRef]
  7. N. Gupta, “Acousto-optic-tunable-filter-based spectropolarimetric imagers for medical diagnostic applicationsinstrument design point of view,” J. Biomed. Opt. 10, 051802 (2005). [CrossRef]
  8. N. Gupta and V. Voloshinov, “Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter,” Appl. Opt. 43, 2752–2759 (2004). [CrossRef]
  9. Q. Li, D. Xu, X. He, Y. Wang, Z. Chen, H. Liu, Q. Xu, and F. Guo, “AOTF based molecular hyperspectral imaging system and its applications on nerve morphometry,” Appl. Opt. 52, 3891–3901 (2013). [CrossRef]
  10. G. Georgiev, D. A. Glenar, and J. J. Hillman, “Spectral characterization of acousto-optic filters used in imaging spectroscopy,” Appl. Opt. 41, 209–217 (2002). [CrossRef]
  11. N. Gupta, “Acousto-optic tunable filter based visible- to near-infrared spectropolarimetric imager,” Opt. Eng. 41, 1033–1038 (2002). [CrossRef]
  12. J. Calpe-Maravilla, J. Vila-Francés, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amorós-López, L. Gómez-Chova, and E. Tajahuerce-Romera, “400- to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15, 023001 (2006). [CrossRef]
  13. E. Dekemper, N. Loodts, B. V. Opstal, J. Maes, F. Vanhellemont, N. Mateshvili, G. Franssens, D. Pieroux, C. Bingen, C. Robert, L. D. Vos, L. Aballea, and D. Fussen, “Tunable acousto-optic spectral imager for atmospheric composition measurements in the visible spectral domain,” Appl. Opt. 51, 6259–6267 (2012). [CrossRef]
  14. J. Calpe, F. Pla, J. Vila, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, L. Gómez, and S. Vázquez, “SmartSpectra: smart multispectral camera for industrial applications,” presented at the Advanced Concepts for Intelligent Vision Systems (ACIVS 2003), Belgium, 2–5 September2003.
  15. J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 77, 073108 (2006). [CrossRef]
  16. S. Leavesley, Y. Jiang, V. Patsekin, B. Rajwa, and J. P. Robinson, “An excitation wavelength-scanning spectral imaging system for preclinical imaging,” Rev. Sci. Instrum. 79, 023707 (2008). [CrossRef]
  17. Y. Ohmachi and N. Uchida, “Temperature dependence of elastic, dielectric, and piezoelectric constants in TeO2 single crystals,” J. Appl. Phys. 41, 2307–2311 (1970). [CrossRef]
  18. N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971). [CrossRef]
  19. G. C. Holst, CCD Arrays, Cameras, and Displays (SPIE, 1998).
  20. J. R. Janesick, Scientific Charge-Coupled Devices (SPIE, 2001).
  21. J. Nieke, M. Solbrig, and A. Neumann, “Noise contributions for imaging spectrometers,” Appl. Opt. 38, 5191–5194 (1999). [CrossRef]
  22. A. P. Goutzoulis, R. P. Dennis, and V. K. Sergei, Design and Fabrication of Acousto-Optic Devices (Dekker, 1994).
  23. I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 206824 (1981). [CrossRef]
  24. V. B. Voloshinov, O. V. Mironov, and E. V. Trots, “Light fluxes at the output of tunable acoustooptic video filters,” Opt. Spectrosc. 71, 306–309 (1991).
  25. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974). [CrossRef]
  26. W. Ruyten, “Smear correction for frame transfer charge-coupled-device cameras,” Opt. Lett. 24, 878–880 (1999). [CrossRef]
  27. K. Powell, D. Chana, D. Fish, and C. Thompson, “Restoration and frequency analysis of smeared CCD images,” Appl. Opt. 38, 1343–1347 (1999). [CrossRef]
  28. D. R. Suhre, L. J. Denes, and N. Gupta, “Telecentric confocal optics for aberration correction of acousto-optic tunable filters,” Appl. Opt. 43, 1255–1260 (2004). [CrossRef]
  29. J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Analysis of acousto-optic tunable filter performance for imaging applications,” Opt. Eng. 49, 113203 (2010). [CrossRef]
  30. V. Balakshy, V. Voloshinov, V. Karasev, V. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996). [CrossRef]
  31. O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited