OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 11 — Apr. 10, 2014
  • pp: 2390–2397

Compact polarization rotator for silicon-based slot waveguide structures

Jinbiao Xiao, Yin Xu, Jiayuan Wang, and Xiaohan Sun  »View Author Affiliations


Applied Optics, Vol. 53, Issue 11, pp. 2390-2397 (2014)
http://dx.doi.org/10.1364/AO.53.002390


View Full Text Article

Enhanced HTML    Acrobat PDF (739 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact polarization rotator (PR) for silicon-based slot waveguides is proposed, where the slot region including the upper claddings is filled with liquid crystals (LCs). With the anisotropic features of the LCs, the transverse field components of eigenmodes have almost identical amplitudes, leading to a high modal hybridness. As a result, the TE (TM) polarization can be rotated efficiently to the TM (TE) polarization within a short length. The numerical results show that a PR 11.3 μm in length at an operating wavelength of 1.55 μm is achieved with an extinction ratio (ER) (insertion loss) of 12.6 (0.22) dB for TE-to-TM and 11.5 (0.30) dB for TM-to-TE. Moreover, the optical bandwidth for TE-to-TM (TM-to-TE) mode must be 64(29)nm to keep the ER over 12 (10) dB. In addition, fabrication tolerances to the structural parameters are investigated, and field evolution along the propagation distance through the PR is also demonstrated.

© 2014 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Integrated Optics

History
Original Manuscript: January 7, 2014
Revised Manuscript: March 7, 2014
Manuscript Accepted: March 7, 2014
Published: April 7, 2014

Citation
Jinbiao Xiao, Yin Xu, Jiayuan Wang, and Xiaohan Sun, "Compact polarization rotator for silicon-based slot waveguide structures," Appl. Opt. 53, 2390-2397 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-11-2390


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1, e1 (2012). [CrossRef]
  2. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008). [CrossRef]
  3. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007). [CrossRef]
  4. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36, 1059–1061 (2011). [CrossRef]
  5. A. Barh, B. M. A. Rahman, R. K. Varshney, and B. P. Pal, “Design and performance study of a compact SOI polarization rotator at 1.55  μm,” J. Lightwave Technol. 31, 3687–3693 (2013). [CrossRef]
  6. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Design rules for slanted-angle polarization rotators,” J. Lightwave Technol. 23, 432–445 (2005). [CrossRef]
  7. J. Yamauchi, M. Yamanoue, and H. Nakano, “A short polarization converter using a triangular waveguide,” J. Lightwave Technol. 26, 1708–1714 (2008). [CrossRef]
  8. Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25, 747–753 (2008). [CrossRef]
  9. M. F. O. Hameed and S. S. A. Obayya, “Design of passive polarization rotator based on silica photonic crystal fiber,” Opt. Lett. 36, 3133–3135 (2011). [CrossRef]
  10. M. F. O. Hameed, M. Abdelrazzak, and S. S. A. Obayya, “Novel design of ultra-compact triangular lattice silica photonic crystal polarization converter,” J. Lightwave Technol. 31, 81–86 (2013). [CrossRef]
  11. T. Amemiya, K. Abe, T. Tanemura, T. Mizumoto, and Y. Nakano, “Nonreciprocal polarization conversion in asymmetric magnetooptic waveguide,” IEEE J. Quantum Electron. 46, 1662–1669 (2010). [CrossRef]
  12. J. Yang, Q. Zhou, X. Jiang, M. Wang, Y. Wang, and R. T. Chen, “Optical circular-polarization modulator employing tilt-poled electrooptic polymers,” J. Lightwave Technol. 22, 1930–1934 (2004). [CrossRef]
  13. Y. Wakabayashi, T. Hashimoto, J. Yamauchi, and H. Nakano, “Short waveguide polarization converter operating over a wide wavelength range,” J. Lightwave Technol. 31, 1544–1550 (2013). [CrossRef]
  14. M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photon. J. 4, 707–714 (2012). [CrossRef]
  15. J. N. Caspers, J. S. Aitchison, and M. Mojahedi, “Experimental demonstration of an integrated hybrid plasmonic polarization rotator,” Opt. Lett. 38, 4054–4057 (2013). [CrossRef]
  16. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef]
  17. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004). [CrossRef]
  18. J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Gunter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013). [CrossRef]
  19. J. Xiao, X. Liu, and X. Sun, “Design of a compact polarization splitter in horizontal multiple-slotted structure,” Jpn. J. Appl. Phys. 47, 3748–3754 (2008). [CrossRef]
  20. J. Wang, J. Xiao, and X. Sun, “Design of a compact polarization splitter composed of a multiple-slotted waveguide and a silicon nanowire,” J. Opt. 15, 035501 (2013). [CrossRef]
  21. J. Xiao, X. Liu, and X. Sun, “Design of polarization-independent optical couplers composed of three parallel slot waveguides,” Appl. Opt. 47, 2687–2695 (2008). [CrossRef]
  22. Y. Xiong and W. N. Ye, “Slotted silicon microring resonators with multimode interference couplers,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2013), pp. 118–119.
  23. J. Xiao, X. Liu, and X. Sun, “Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures,” Opt. Express 15, 8300–8308 (2007). [CrossRef]
  24. Y. Xu, J. Wang, J. Xiao, and X. Sun, “Design of a compact silicon-based slot-waveguide crossing,” Appl. Opt. 52, 3737–3744 (2013). [CrossRef]
  25. Y. Xu, J. Wang, J. Xiao, and X. Sun, “Design of a compact silicon-based slot-waveguide crossing composed of an orthogonal strip waveguide and four logarithmical mode converters,” J. Phys. D 46, 455102 (2013). [CrossRef]
  26. T. Dar, J. Homola, B. M. A. Rahman, and M. Rajarajan, “Label-free slot-waveguide biosensor for the detection of DNA hybridization,” Appl. Opt. 51, 8195–8202 (2012). [CrossRef]
  27. Q. Liu, J. S. Kee, and M. K. Park, “A refractive index sensor design based on grating-assisted coupling between a strip waveguide and a slot waveguide,” Opt. Express 21, 5897–5909 (2013). [CrossRef]
  28. H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G. Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett. 101, 021105 (2012). [CrossRef]
  29. J. Fan, C. Huang, and L. Zhu, “A compact, broadband slot waveguide polarization rotator,” AIP Adv. 1, 042136 (2011).
  30. N. N. Feng, R. Sun, J. Michel, and L. C. Kimerling, “Low-loss compact-size slotted waveguide polarization rotator and transformer,” Opt. Lett. 32, 2131–2133 (2007). [CrossRef]
  31. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).
  32. J. Xiao and X. Sun, “Full-vectorial mode solver for anisotropic optical waveguides using multidomain spectral collocation method,” Opt. Commun. 283, 2835–2840 (2010). [CrossRef]
  33. C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, “A full-vectorial beam propagation method for anisotropic waveguides,” J. Lightwave Technol. 12, 1926–1931 (1994). [CrossRef]
  34. Q. Wang, G. Farrell, and Y. Semenova, “Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method,” J. Opt. Soc. Am. A 23, 2014–2019 (2006). [CrossRef]
  35. M. Hiltunen, E. Heinonen, J. Hiltunen, J. Puustinen, J. Lappalainen, and P. Karioja, “Nanoimprint fabrication of slot waveguides,” IEEE Photon. J. 5, 2200808 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited