OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 11 — Apr. 10, 2014
  • pp: 2431–2436

Wavelength-selective infrared Salisbury screen absorber

Joo-Yun Jung, Jong Yeon Park, Sangwook Han, Aniruddha S. Weling, and Dean P. Neikirk  »View Author Affiliations

Applied Optics, Vol. 53, Issue 11, pp. 2431-2436 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (806 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Experimental long wavelength infrared spectral response characterization of a narrowband Salisbury screen absorber suitable for use in microbolometer focal plane arrays is presented. We have demonstrated a microfabricated germanium dielectric support structure layer that replaces the usual silicon nitride structural layer in microbolometers. The fabricated Salisbury screen absorber consists of a chromium resistive sheet as an absorber layer above a germanium dielectric/air-gap/interference structure. In order to produce wavelength-selective narrowband absorption, the general design rules for the germanium dielectric supported Salisbury screen show that the thickness of the air gap should be a half wavelength thick and the optical thickness of the germanium layer a quarter dielectric wavelength thick.

© 2014 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.2440) Instrumentation, measurement, and metrology : Filters
(040.6808) Detectors : Thermal (uncooled) IR detectors, arrays and imaging

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: January 21, 2014
Revised Manuscript: March 7, 2014
Manuscript Accepted: March 7, 2014
Published: April 7, 2014

Joo-Yun Jung, Jong Yeon Park, Sangwook Han, Aniruddha S. Weling, and Dean P. Neikirk, "Wavelength-selective infrared Salisbury screen absorber," Appl. Opt. 53, 2431-2436 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, C. J. Hill, S. B. Rafol, D. Salazar, J. Woollaway, P. D. LeVan, and M. Z. Tidrow, “Towards dualband megapixel QWIP focal plane arrays,” Infrared Phys. Technol. 50, 217–226 (2007). [CrossRef]
  2. Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “A normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity,” IEEE J. Quantum Electron. 38, 1234–1237 (2002). [CrossRef]
  3. H. Hara, N. Kishi, and H. Iwaoka, “Silicon bolometer and micro variable infrared filter for CO2 measurement,” in Proceedings of IEEE Conference on Optical MEMS (IEEE, 2000), pp. 139–140.
  4. S. W. Han, J. W. Kim, Y. S. Sohn, and D. P. Neikirk, “Design of infrared wavelength-selective microbolometers using planar multimode detectors,” Electron. Lett. 40, 1410–1411 (2004). [CrossRef]
  5. J.-Y. Jung, J. Y. Park, and D. P. Neikirk, “Wavelength-selective infrared detectors based on cross patterned resistive sheets,” Proc. SPIE 7298, 72980L (2009). [CrossRef]
  6. T. Maier and H. Bruckl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett. 34, 3012–3014 (2009). [CrossRef]
  7. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial; and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010). [CrossRef]
  8. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011). [CrossRef]
  9. Y. Wang, B. J. Potter, and J. J. Talghader, “Coupled absorption filters for thermal detectors,” Opt. Lett. 31, 1945–1947 (2006). [CrossRef]
  10. R. A. Wood, “Uncooled thermal imaging with monolithic silicon focal planes,” Proc. SPIE 2020, 322–329 (1993). [CrossRef]
  11. B. E. Cole, “Microstructure design for high IR sensitivity,” U. S. patent5,286,976 (15February1994).
  12. M. K. Gunde and M. Macek, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi A 183, 439–449 (2001). [CrossRef]
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  14. D. M. Pozar, Microwave Engineering (Addison-Wesley, 1993).
  15. A. Bagolini, L. Pakula, T. L. M. Pham, P. J. French, and P. M. Sarro, “Polyimide sacrificial layer and novel materials for post-processing surface micromachining,” J. Micromech. Microeng. 12, 385–389 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited