OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 11 — Apr. 10, 2014
  • pp: 2441–2445

Polarization filter characteristics of photonic crystal fibers with square lattice and selectively filled gold wires

Wan Zhang, Shu-guang Li, Guo-Wen An, Zhen-Kai Fan, and Ya-Jie Bao  »View Author Affiliations

Applied Optics, Vol. 53, Issue 11, pp. 2441-2445 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (566 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel design of Au-filled photonic crystal fiber (PCF) with square lattice has been proposed in this paper. The resonance strength of the surface plasmon mode and the impacts of structural parameters of the PCF on the polarization filter characteristics are studied through the finite element method. Numerical results show that the sizes of Au wires and the symmetry of the air holes near the fiber core have a great effect on the polarization filter characteristics. In the optimization process, it was found that the resonance strengths can reach 279.10 and 399.18dB/cm at wavelengths of 1.02 μm and 1.55 μm, respectively, which can be applied in many polarization filter devices.

© 2014 Optical Society of America

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 17, 2014
Revised Manuscript: March 8, 2014
Manuscript Accepted: March 10, 2014
Published: April 8, 2014

Wan Zhang, Shu-guang Li, Guo-Wen An, Zhen-Kai Fan, and Ya-Jie Bao, "Polarization filter characteristics of photonic crystal fibers with square lattice and selectively filled gold wires," Appl. Opt. 53, 2441-2445 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Russell, “Photonic crystal fibers,” Appl. Phys. Rev. 299, 358–362 (2003).
  2. P. Russell, “Photonic crystal fibers: a historical account,” Nat. Photonics 10, 11–15 (2007).
  3. M. Chen, R. Yu, and A. Zhao, “Polarization properties of rectangular lattice photonic crystal fibers,” Opt. Commun. 241, 365–370 (2004). [CrossRef]
  4. H. Zhao, M. Chen, and G. Li, “Temperature dependence of the PER in PM-PCF coil,” Chin. Opt. Lett. 10, 100603 (2012). [CrossRef]
  5. Y. Wang, M. Alharbi, T. D. Bradley, and C. Fourcade-Dutin, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–18 (2013). [CrossRef]
  6. J.-H. Liou, S.-S. Huang, and C.-P. Yu, “Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers,” Opt. Commun. 283, 971–974 (2010). [CrossRef]
  7. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005). [CrossRef]
  8. H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. St. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16, 17227–17236 (2008). [CrossRef]
  9. A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express 19, 3799–3808 (2011). [CrossRef]
  10. P. Uebel, M. A. Schmidt, M. Scharrer, and P. St. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13, 063016 (2011). [CrossRef]
  11. B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013). [CrossRef]
  12. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35, 2573–2575 (2010). [CrossRef]
  13. A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28, 198–213 (2008). [CrossRef]
  14. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15, 16270–16278 (2007). [CrossRef]
  15. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93, 111102 (2008). [CrossRef]
  16. M. Koshiba, “Full-vector analysis of photonic crystal fiber using the finite element method,” IEICE Trans. Electron. E85-C, 881–888 (2002).
  17. M. Koshiba and K. Saitoh, “Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures,” Appl. Opt. 42, 6267–6275 (2003). [CrossRef]
  18. M. Koshiba and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18, 737–743 (2000). [CrossRef]
  19. F. Poli, M. Foroni, and M. Bottacini, “Single-mode regime of square-lattice photonic crystal fibers,” J. Opt. Soc. Am. A 22, 1655–1661 (2005). [CrossRef]
  20. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005). [CrossRef]
  21. M. A. Schmidt and P. S. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16, 13617–13623 (2008). [CrossRef]
  22. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited