OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 11 — Apr. 10, 2014
  • pp: 2446–2454

High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module

Kamil Liżewski, Sławomir Tomczewski, Tomasz Kozacki, and Julianna Kostencka  »View Author Affiliations


Applied Optics, Vol. 53, Issue 11, pp. 2446-2454 (2014)
http://dx.doi.org/10.1364/AO.53.002446


View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-precision topography measurement of micro-objects using interferometric and holographic techniques can be realized provided that the in-focus plane of an imaging system is very accurately determined. Therefore, in this paper we propose an accurate technique for in-focus plane determination, which is based on coherent and incoherent light. The proposed method consists of two major steps. First, a calibration of the imaging system with an amplitude object is performed with a common autofocusing method using coherent illumination, which allows for accurate localization of the in-focus plane position. In the second step, the position of the detected in-focus plane with respect to the imaging system is measured with white light interferometry. The obtained distance is used to accurately adjust a sample with the precision required for the measurement. The experimental validation of the proposed method is given for measurement of high-numerical-aperture microlenses with subwavelength accuracy.

© 2014 Optical Society of America

OCIS Codes
(120.2830) Instrumentation, measurement, and metrology : Height measurements
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(090.1995) Holography : Digital holography

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 24, 2013
Revised Manuscript: March 3, 2014
Manuscript Accepted: March 6, 2014
Published: April 9, 2014

Citation
Kamil Liżewski, Sławomir Tomczewski, Tomasz Kozacki, and Julianna Kostencka, "High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module," Appl. Opt. 53, 2446-2454 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-11-2446


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Debaes, H. Ottevaere, and H. Thienpont, “Microoptical components for information optics and photonics,” in Advances in Information Optics and Photonics, A. T. Friberg and R. Dändliker, eds. (PHI Learning, 2009), pp. 89–116.
  2. W. Osten, ed., Optical Inspection of Micro Systems (CRC Press, 2007).
  3. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45, 829–835 (2006). [CrossRef]
  4. G. Pedrini, P. Fröning, H. Tiziani, and F. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257–268 (1999). [CrossRef]
  5. T. Kreis, Handbook of Holographic Interferometry—Optical and Digital Methods (Wiley-VHC, 2005).
  6. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef]
  7. F. Shen and A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45, 1102–1110 (2006). [CrossRef]
  8. T. Kozacki, K. Falaggis, and M. Kujawinska, “Computation of diffracted fields for the case of high numerical aperture using the angular spectrum method,” Appl. Opt. 51, 7080–7088 (2012). [CrossRef]
  9. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express 9, 294–302 (2001). [CrossRef]
  10. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13, 6738–6749 (2005). [CrossRef]
  11. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigations on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 34005 (2006). [CrossRef]
  12. B. C. Bergner and A. Davies, “Self-calibration for transmitted wavefront measurements,” Appl. Opt. 46, 18–24 (2007). [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  14. T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett. 35, 1840–1842 (2010). [CrossRef]
  15. T. Kozacki, M. Jozwik, and K. Liżewski, “High-numerical-aperture microlens shape measurement with digital holographic microscopy,” Opt. Lett. 36, 4419–4421 (2011). [CrossRef]
  16. A. Neumann, Y. Kuznetsova, and S. R. J. Brueck, “Structured illumination for the extension of imaging interferometric microscopy,” Opt. Express 16, 6785–6793 (2008). [CrossRef]
  17. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006). [CrossRef]
  18. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008). [CrossRef]
  19. W. Bishara, T. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010). [CrossRef]
  20. K. Liżewski, T. Kozacki, and J. Kostencka, “Digital holographic microscope for measurement of high gradient deep topography object based on super-resolution concept,” Opt. Lett. 38, 1878–1880 (2013). [CrossRef]
  21. T. Kozacki, K. Liżewski, and J. Kostencka, “Holographic method for topography measurement of highly tilted and high numerical aperture micro structures,” Opt. Laser Technol. 49, 38–46 (2013). [CrossRef]
  22. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef]
  23. M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19, 074006 (2008). [CrossRef]
  24. T. Kreis and W. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360 (1997). [CrossRef]
  25. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast mi-croscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999). [CrossRef]
  26. U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002). [CrossRef]
  27. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D82 (2008). [CrossRef]
  28. M. Liebling and M. Unser, “Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion,” J. Opt. Soc. Am. A 21, 2424–2430 (2004). [CrossRef]
  29. A. Yang, B. Chen, and Y. Zhang, “Focusing evaluation method based on wavelet transform and adaptive genetic algorithm,” Opt. Eng. 51, 023201 (2012). [CrossRef]
  30. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895–5908 (2006). [CrossRef]
  31. W. Li, N. C. Loomis, Q. Hu, and C. S. Davis, “Focus detection from digital in-line holograms based on spectral l1 norms,” J. Opt. Soc. Am. A 24, 3054–3062 (2007). [CrossRef]
  32. P. Gao, B. Yao, R. Rupp, J. Min, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, and T. Ye, “Autofocusing based on wavelength dependence of diffraction in two wave-wavelength digital holographic microscopy,” Opt. Lett. 37, 1172–1174 (2012). [CrossRef]
  33. H. Wolff, K. Zenger, and B. Kraus, “Progress in live-cell imaging and screening applications using Definite Focus,” BioTechniques 47, 976–978 (2009). [CrossRef]
  34. Carl Zeiss GmbH., “Definite Focus from Carl Zeiss,” http://www.biotechniques.com/multimedia/archive/00044/Definite_Focus_from__44228a.pdf .
  35. J. Peters, “Nikon Instruments TiE-PFS Dynamic Focusing System,” Nat. Methods [Application Notes] (2008), http://www.nature.com/app_notes/nmeth/2008/082312/full/an6676.html.
  36. Leica, http://www.leica-microsystems.com/products/light-microscopes/life-science-research/inverted-microscopes/details/product/leica-dmi6000-with-adaptive-focus-control-1/downloads/ .
  37. J. C. Wayant and K. Creath, “Advances in interferometric optical profiling,” Int. J. Mach. Tools Manuf. 32, 5–10 (1992).
  38. M. Zecchino, E. Novak, and J. Schmit, “Optical profiling: applications expand,” Photonics Spectra 37, 68–72 (2003).
  39. K. Liżewski, S. Tomczewski, J. Kostencka, and T. Kozacki, “Hybrid and transflective system based on digital holographic microscope and low coherent interferometer for high gradient shape measurement,” Proc. SPIE 8788, 87880A (2013).
  40. A. Rohrbach and W. Singer, “Scattering of a scalar field at dielectric surfaces by Born series expansion,” J. Opt. Soc. Am. A 15, 2651–2659 (1998). [CrossRef]
  41. J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013). [CrossRef]
  42. S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express 15, 13640–13648 (2007). [CrossRef]
  43. S. Reichelt and H. Zappe, “Combined Twyman–Green and Mach–Zehnder interferometer for microlens testing,” Appl. Opt. 44, 5786–5792 (2005). [CrossRef]
  44. V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009). [CrossRef]
  45. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2505 (1987). [CrossRef]
  46. T. Kozacki, M. Józwik, and R. Joźwicki, “Determination of optical field generated by a microlens using digital holographic method,” Opto-Electron. Rev. 17, 211–216 (2009). [CrossRef]
  47. S. Tomczewski, A. Pakula, J. Van Erps, H. Thienpont, and L. Salbut, “Low-coherence interferometry with polynomial interpolation on compute unified device architecture-enabled graphics processing units,” Proc. SPIE 52, 094105 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited