OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 11 — Apr. 10, 2014
  • pp: 2515–2522

Performance evaluation of a metal–insulator–metal surface plasmon resonance optical gas sensor under the effect of Gaussian beams

Noha H. Anous and Diaa A. Khalil  »View Author Affiliations


Applied Optics, Vol. 53, Issue 11, pp. 2515-2522 (2014)
http://dx.doi.org/10.1364/AO.53.002515


View Full Text Article

Enhanced HTML    Acrobat PDF (581 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, the performance of a nonconventional IR surface plasmon resonance (SPR) gas sensor structure based on the use of a metal–insulator–metal (MIM) structure is studied. This MIM-based sensor structure gives enhanced performance five times better than the conventional MI SPR optical gas sensors. The performance of the SPR gas sensors is studied under the effect of oblique incident Gaussian beams with different spot sizes, and the performance enhancement of the MIM structure is confirmed for different spot sizes. The simulation technique used to generate the results is also verified by comparing them to actual experimental results available in the literature.

© 2014 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Thin Films

History
Original Manuscript: December 18, 2013
Revised Manuscript: March 5, 2014
Manuscript Accepted: March 6, 2014
Published: April 10, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Noha H. Anous and Diaa A. Khalil, "Performance evaluation of a metal–insulator–metal surface plasmon resonance optical gas sensor under the effect of Gaussian beams," Appl. Opt. 53, 2515-2522 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-11-2515


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982). [CrossRef]
  2. J. Jha and A. K. Sharma, “High performance sensor based on surface plasmon resonance with chalcogenide prism and aluminium for detection in infrared,” Opt. Lett. 34, 749–751 (2009). [CrossRef]
  3. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007). [CrossRef]
  4. S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors: review,” Sensors 11, 1565–1588 (2011). [CrossRef]
  5. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999). [CrossRef]
  6. J. M. Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-time label-free surface plasmon resonance biosensing with gold nanohole arrays fabricated by nanoimprint lithography,” Sensors 13, 1360–1368 (2013).
  7. I. Choi and Y. Choi, “Plasmonic nanosensors: review and prospect,” IEEE J. Sel. Top. Quantum Electron. 18, 1110–1121 (2012). [CrossRef]
  8. M. Monir, H. El-Refaei, and D. Khalil, “Single mode refractive index reconstruction using an NM-line technique,” in Fiber and Integrated Optics (Taylor & Francis, 2006), Vol. 25, pp. 69–74.
  9. S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J. Pellaux, T. Gresch, M. Fischer, and J. Faist, “Surface plasmon resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Opt. Express 17, 293–303 (2009). [CrossRef]
  10. R. Kasztelanic, “Surface plasmon resonance sensors—novel architecture and improvements,” Opt. Appl. XLI, 145–155 (2011).
  11. S. Patskovsky, A. V. Kabashin, and M. Meunier, “Properties and sensing charecteristics of surface-plasmon in infrared light,” J. Opt. Soc. Am. 20, 1644–1650 (2003). [CrossRef]
  12. J. Guo, P. D. Keathley, and J. T. Hastings, “Dual-mode surface-plasmon-resonance sensors using angular interrogations,” Opt. Lett. 33, 512–514 (2008). [CrossRef]
  13. R. Gordon, “Surface plasmon nanophotonics: a tutorial,” IEEE Nanotechnol. Mag. 2(3), 12–18 (2009). [CrossRef]
  14. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16, 14902–14909 (2008). [CrossRef]
  15. M. Scalora, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallodielectric stacks,” Opt. Express 15, 508–523 (2007). [CrossRef]
  16. T. Yang and K. B. Crozier, “Analysis of surface plasmon waves in metal–dielectric–metal structures and the criterion for negative refractive index,” Opt. Express 17, 1136–1143 (2009). [CrossRef]
  17. Z. Yu and S. Fan, “Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes,” Opt. Express 19, 10029–10040 (2011). [CrossRef]
  18. S. Ekgasit, C. Thammacharoen, and W. Knoll, “Surface plasmon resonance spectroscopy based on evanescent field treatment,” Anal. Chem. 76, 561–568 (2004). [CrossRef]
  19. K. P. Chiu and D. P. Tsai, “Influence of near-field electromagnetic interactions on optical properties of perfect lens consisting of LHM,” IEEE Trans. Magn. 41(2), 1016–1018 (2005). [CrossRef]
  20. N. Anous, D. Khalil, and A. M. E. Safwat, “The effect of Gaussian beam spot size on the performance of an SPR IR optical CO2 sensor,” in Proceedings of the 7th International Symposium on High-capacity Optical Networks and Enabling Technologies (HONET) (2010), pp. 19–21.
  21. P. Benech and D. Khalil, “Rigorous spectral analysis of leaky structures: application to the prism coupling problem,” Opt. Commun. 118, 220–226 (1995). [CrossRef]
  22. B. K. Shukla and R. H. Patel, “Simulation of paraxial beam propagation using plane wave expansion method,” in Proceedings of Recent Advances in Microwave Theory and Applications (2008), pp. 652–656.
  23. P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and modal technique for the analysis of integrated optical structure: the radiation spectrum method RSM,” Opt. Commun. 140, 128–145 (1997). [CrossRef]
  24. O. Mata-Mendez and F. Chavez-Rivas, “Theoretical and numerical study of diffraction on electromagnetic optics VI. Obliquely incident T.E.-ploarized Gaussian beams on finite grating with conducting substrate,” Revista Mexicana De Fi’sica 50, 255–264 (2004).
  25. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  26. Application Note, “Polymer identification using mid infrared spectroscopy,” Perkin-Elmer, 2011, http://www.perkinelmer.com/CMSResources/Images/44132015APP_PolymerIdentificationMidInfaredSpectroscopy.pdf .
  27. Y. K. Chang, Z.-X. Lou, K.-D. Chang, and C.-W. Chang, “Universal scaling of plasmonic refractive index sensors,” Opt. Express 21, 1804–1811 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited