OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 12 — Apr. 20, 2014
  • pp: 2539–2547

Magneto-optic surface plasmon polariton modulator based on refractive index variations

M. Khatir and N. Granpayeh  »View Author Affiliations


Applied Optics, Vol. 53, Issue 12, pp. 2539-2547 (2014)
http://dx.doi.org/10.1364/AO.53.002539


View Full Text Article

Enhanced HTML    Acrobat PDF (1363 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we have proposed a magneto-optic (MO) surface plasmon polariton (SPP) modulator based on variations of refractive index. For description of modulator operation, we have analyzed the MO effects in the insulator–metal–insulator (IMI) SPP slab waveguides in a transversal configuration in which the applied magnetic field is parallel to the interfaces and normal to the wave propagation direction. We have derived an exact dispersion relation by considering MO effects for one of the side layers by the separation of variables method. The cut-off conditions have been studied for the SPP modes guided by IMI structures as a function of the variations of the dielectric constants of the side layers. We have shown that the SPP modes always propagate in a symmetric structure and the SPP odd modes do not have a cut-off dielectric constant in an asymmetric structure. Also, we have shown that in an asymmetric IMI configuration, the SPP even mode has a cut-off effective dielectric constant for all metal layer thicknesses. These configurations can be used to design active devices, such as switches and modulators to be used in photonic integrated circuits.

© 2014 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3820) Materials : Magneto-optical materials
(240.6680) Optics at surfaces : Surface plasmons
(130.4110) Integrated optics : Modulators

ToC Category:
Optical Devices

History
Original Manuscript: November 29, 2013
Revised Manuscript: March 3, 2014
Manuscript Accepted: March 10, 2014
Published: April 11, 2014

Citation
M. Khatir and N. Granpayeh, "Magneto-optic surface plasmon polariton modulator based on refractive index variations," Appl. Opt. 53, 2539-2547 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-12-2539


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  2. J. H. Park, H. Takagi, J. K. Cho, K. Nishimura, H. Uchida, and M. Inoue, “Magnetooptic spatial light modulator with one-step pattern growth on ion-milled substrates by liquid-phase epitaxy,” IEEE Trans. Magn. 40, 3045–3047 (2004). [CrossRef]
  3. K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40, 571–579 (2004). [CrossRef]
  4. N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F. J. Schroteler, M. Wallenhorst, and H. Dötsch, “Improved design of magneto-optic rib waveguides for optical isolators,” J. Lightwave Technol. 16, 818–823 (1998). [CrossRef]
  5. J. Guo, Z. Zhu, and W. Deng, “Small-angle measurement based on surface-plasmon resonance and the use of magneto-optical modulation,” Appl. Opt. 38, 6550–6555 (1999). [CrossRef]
  6. Y. Shoji, I. W. Hsieh, R. M. Osgood, and T. Mizumoto, “Polarization-independent magneto-optical waveguide isolator using TM-mode nonreciprocal phase shift,” J. Lightwave Technol. 25, 3108–3113 (2007). [CrossRef]
  7. M. Vanwolleghem, P. Gogol, P. Beauvillain, W. Van Parys, and R. L. Baets, “Design and optimization of a monolithically integratable InP-based optical waveguide isolator,” J. Opt. Soc. Am. B 24, 94–105 (2007). [CrossRef]
  8. Z. Haifeng, J. Xiaoqing, Y. Jianyi, Z. Qiang, Y. Tianbao, W. Minghua, and T. Yu, “Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach–Zehnder interferometer,” J. Lightwave Technol. 26, 3166–3172 (2008). [CrossRef]
  9. J. Montoya, J. Hensley, K. Parameswaran, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009). [CrossRef]
  10. M. Khatir and N. Granpayeh, “Design and simulation of magneto-optic Mach-Zehnder isolator,” Optik 122, 2199–2202 (2011). [CrossRef]
  11. M. Khatir and N. Granpayeh, “A wide band and high confinement surface plasmon polariton mode converter based on magneto-optic effects,” IEEE Trans. Magn. 49, 1343–1352 (2013). [CrossRef]
  12. M. Khatir and N. Granpayeh, “An ultra-compact and high speed magneto-optic surface plasmon switch,” J. Lightwave Technol. 31, 1045–1054 (2013). [CrossRef]
  13. R. Bahuguna, M. Mina, T. Jin-Wei, and R. J. Weber, “Magneto-optic-based fiber switch for optical communications,” IEEE Trans. Magn. 42, 3099–3101 (2006). [CrossRef]
  14. R. Bahuguna, M. Mina, and R. J. Weber, “Mach-Zehnder interferometric switch utilizing Faraday rotation,” IEEE Trans. Magn. 43, 2680–2682 (2007). [CrossRef]
  15. S. Kemmet, M. Mina, and R. J. Weber, “Current-controlled, high-speed magneto-optic switching,” IEEE Trans. Magn. 46, 1829–1831 (2010). [CrossRef]
  16. T. Jin-Wei, M. Mina, and R. J. Weber, “All-optical integrated switch utilizing Faraday rotation,” IEEE Trans. Magn. 46, 2474–2477 (2010). [CrossRef]
  17. B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A 8, S561–S566 (2006). [CrossRef]
  18. Z. Sun, Y. He, and J. Guo, “Surface plasmon resonance sensor based on polarization interferometry and angle modulation,” Appl. Opt. 45, 3071–3076 (2006). [CrossRef]
  19. G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magneto-plasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A 11, 114023 (2009). [CrossRef]
  20. S. E. Irvine and A. Y. Elezzabi, “A miniature broadband bismuth-substituted yttrium iron garnet magneto-optic modulator,” J. Phys. D 36, 2218–2221 (2003). [CrossRef]
  21. S. E. Irvine and A. Y. Elezzabi, “Wideband magneto-optic modulation in a bismuth-substituted yttrium iron garnet waveguide,” Opt. Commun. 220, 325–329 (2003). [CrossRef]
  22. V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Optical isolator utilizing surface plasmons,” Material 5, 857–871 (2012).
  23. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  24. B. Sepúlveda, L. M. Lechuga, and G. Armelles, “Magneto-optic effects in surface-plasmon-polaritons slab waveguides,” J. Lightwave Technol. 24, 945–955 (2006). [CrossRef]
  25. Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum. 71, 1243–1255 (2000). [CrossRef]
  26. A. Erdmann and P. Hertel, “Beam-propagation in magnetooptic waveguides,” IEEE J. Quantum Electron. 31, 1510–1516 (1995). [CrossRef]
  27. R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 30, 1473–1475 (2005). [CrossRef]
  28. M. Khatir and N. Granpayeh, “An exact analysis method of SPP propagation in the anisotropic magneto-optic slab waveguides, I. Transversal configuration,” Optik 124, 276–281 (2013). [CrossRef]
  29. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985). [CrossRef]
  30. A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  31. J. Shibayama, A. Nomura, R. Ando, J. Yamauchi, and H. Nakano, “A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices,” IEEE J. Quantum Electron. 46, 40–49 (2010). [CrossRef]
  32. H. Dötsch, P. Hertel, B. Lührmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28, 2979–2984 (1992). [CrossRef]
  33. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000). [CrossRef]
  34. J. Park, K. Y. Kim, I. M. Lee, H. Na, S. Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18, 598–623 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited