OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 12 — Apr. 20, 2014
  • pp: 2548–2555

Holographic fabrication of functionally graded photonic lattices through spatially specified phase patterns

Jeff Lutkenhaus, David George, Bayaner Arigong, Hualiang Zhang, Usha Philipose, and Yuankun Lin  »View Author Affiliations


Applied Optics, Vol. 53, Issue 12, pp. 2548-2555 (2014)
http://dx.doi.org/10.1364/AO.53.002548


View Full Text Article

Enhanced HTML    Acrobat PDF (1025 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we present a method for the mathematically formulated phase engineering of interfering laser beams through a spatial light modulator for a holographic fabrication of graded photonic lattices. The desired phases can be programmed at specific locations by assigning gray levels in cellular structures. The method is demonstrated by embedding single-lattice structures or missing lattices in dual-lattice periodic photonic structures. The demonstrated method can be potentially combined with the coordinate transformation technique in transformation optics for the fabrication of graded photonic devices.

© 2014 Optical Society of America

OCIS Codes
(090.1970) Holography : Diffractive optics
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.6120) Optical devices : Spatial light modulators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: December 24, 2013
Revised Manuscript: February 21, 2014
Manuscript Accepted: March 13, 2014
Published: April 11, 2014

Citation
Jeff Lutkenhaus, David George, Bayaner Arigong, Hualiang Zhang, Usha Philipose, and Yuankun Lin, "Holographic fabrication of functionally graded photonic lattices through spatially specified phase patterns," Appl. Opt. 53, 2548-2555 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-12-2548


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  3. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonics crystals: putting a new twist on light,” Nature 386, 143–149 (1997). [CrossRef]
  4. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5, 91–94 (2011). [CrossRef]
  5. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004). [CrossRef]
  6. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004). [CrossRef]
  7. J. H. Moon and S. Yang, “Creating three-dimensional polymeric microstructures by multi-beam interference lithography,” J. Macromol. Sci. Polym. Rev. C 45, 351–373 (2005).
  8. D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23, 147–179 (2011). [CrossRef]
  9. L. Pang, W. Nakagawa, and Y. Fainman, “Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write,” Appl. Opt. 42, 5450–5456 (2003). [CrossRef]
  10. K. Ohlinger, H. Zhang, Y. Lin, D. Xu, and K. P. Chen, “A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication,” Opt. Mater. Express 1, 1034–1039 (2011). [CrossRef]
  11. J. Lutkenhaus, F. A. Farro, D. George, K. Ohlinger, H. Zhang, Z. Poole, K. P. Chen, and Y. Lin, “Holographic fabrication of 3D photonic crystals using silicon based reflective optics element,” Opt. Mater. Express 2, 1236–1241 (2012). [CrossRef]
  12. J. Li, Y. Liu, X. Xie, P. Zhang, B. Liang, L. Yan, J. Zhou, G. Kurizki, D. Jacobs, K. S. Wong, and Y. Zhong, “Fabrication of photonic crystals with functional defects by one-step holographic lithography,” Opt. Express 16, 12899–12904 (2008). [CrossRef]
  13. X. Xie, Y. Liu, M. Zhang, J. Zhou, and K. S. Wong, “Manipulating spatial light fields for micro- and nano-photonics,” Physica E 44, 1109 (2012). [CrossRef]
  14. P. Q. Zhang, X. S. Xie, Y. F. Guan, J. Y. Zhou, K. S. Wong, and L. Yan, “Adaptive synthesis of optical pattern for photonic crystal lithography,” Appl. Phys. B 104, 113 (2011). [CrossRef]
  15. A. Kelberer, M. Boguslawski, P. Rose, and C. Denz, “Embedding defect sites into hexagonal nondiffracting wave fields,” Opt. Lett. 37, 5009–5011 (2012). [CrossRef]
  16. M. Kumar and J. Joseph, “Embedding a nondiffracting defect site in helical lattice wave-field by optical phase engineering,” Appl. Opt. 52, 5653–5658 (2013). [CrossRef]
  17. V. Ramanan, E. Nelson, A. Brzezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008). [CrossRef]
  18. K. Ohlinger, F. Torres, Y. Lin, K. Lozano, D. Xu, and K. P. Chen, “Photonic crystals with defect structures fabricated through a combination of holographic lithography and two-photon lithography,” J. Appl. Phys. 108, 073113 (2010). [CrossRef]
  19. R. Menon, A. Patel, D. Chao, M. Walsh, and H. I. Smith, “Zone-plate-array lithography (ZPAL): optical maskless lithography for cost-effective patterning,” Proc. SPIE 5751, 330–339 (2005). [CrossRef]
  20. V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009). [CrossRef]
  21. N. D. Lai, W. Liang, J. Lin, and C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express 13, 5331–5337 (2005). [CrossRef]
  22. S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. USA 101, 12428–12433 (2004). [CrossRef]
  23. Y. Lin, A. Harb, K. Lozano, D. Xu, and K. P. Chen, “Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element,” Opt. Express 17, 16625–16631 (2009). [CrossRef]
  24. G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012). [CrossRef]
  25. M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20, 23643–23652 (2012). [CrossRef]
  26. G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012). [CrossRef]
  27. T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, “Pattern-integrated interference [invited],” Appl. Opt. 52, 61–72 (2013). [CrossRef]
  28. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006). [CrossRef]
  29. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777 (2006). [CrossRef]
  30. B. Arigong, J. Shao, H. Ren, G. Zheng, J. Lutkenhaus, H. Kim, Y. Lin, and H. Zhang, “Reconfigurable surface plasmon polariton wave adapter designed by transformation optics,” Opt. Express 20, 13789–13797 (2012). [CrossRef]
  31. B. Vasic, G. Isic, R. Gajic, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18, 20321–20333 (2010). [CrossRef]
  32. R. C. Rumpf and J. Pazos, “Synthesis of spatially variant lattices,” Opt. Express 20, 15263–15274 (2012). [CrossRef]
  33. J. Lutkenhaus, D. George, M. Moazzezi, U. Philipose, and Y. Lin, “Digitally tunable holographic lithography using a spatial light modulator as a programmable phase mask,” Opt. Express 21, 26227–26235 (2013). [CrossRef]
  34. K. Ohlinger, J. Lutkenhaus, B. Arigong, H. Zhang, and Y. Lin, “Spatially addressable design of gradient index structures through spatial light modulator based holographic lithography,” J. Appl. Phys. 114, 213102 (2013). [CrossRef]
  35. U. Levy, H. Kim, C. Tsai, and Y. Fainman, “Near-infrared demonstration of computer generated holograms implemented by using subwavelength gratings with space-variant orientation,” Opt. Lett. 30, 2089–2091 (2005). [CrossRef]
  36. J. R. Sheats and B. W. Smith, Microlithography: Science and Technology (Marcel Dekker, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited