OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 12 — Apr. 20, 2014
  • pp: 2595–2601

Dynamic characteristics of photonic crystal quantum dot lasers

Mehdi Banihashemi and Vahid Ahmadi  »View Author Affiliations


Applied Optics, Vol. 53, Issue 12, pp. 2595-2601 (2014)
http://dx.doi.org/10.1364/AO.53.002595


View Full Text Article

Enhanced HTML    Acrobat PDF (606 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we analyze the dynamic characteristics of quantum dot (QD) photonic crystal lasers by solving Maxwell equations coupled to rate equations through linear susceptibility of QDs. Here, we study the effects of the quality factor of the microcavity and temperature on the delay, relaxation oscillation frequency, and output intensity of the lasers. Moreover, we investigate the dependence of the Purcell factor on temperature. We show that when the quality factor of the microcavity is so high that we can consider its linewidth as a delta function in comparison with QDs, the Purcell factor significantly drops with increasing temperature.

© 2014 Optical Society of America

OCIS Codes
(140.3948) Lasers and laser optics : Microcavity devices
(230.5298) Optical devices : Photonic crystals
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Optical Devices

History
Original Manuscript: October 8, 2013
Revised Manuscript: January 21, 2014
Manuscript Accepted: March 7, 2014
Published: April 15, 2014

Citation
Mehdi Banihashemi and Vahid Ahmadi, "Dynamic characteristics of photonic crystal quantum dot lasers," Appl. Opt. 53, 2595-2601 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-12-2595


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997). [CrossRef]
  2. D. Englund, H. Altug, B. Ellis, and J. Vuckovic, “Ultrafast photonic crystal lasers,” Laser Photon. Rev. 2, 264–274 (2008).
  3. T. Baba and D. Sano, “Low threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron. 9, 1340–1346 (2003). [CrossRef]
  4. T. Baba, T. Hamano, F. Koyama, and K. Iga, “Spontaneous emission factor of microcavity DBR surface-emitting laser,” IEEE J. Quantum Electron. 27, 1347–1358 (1991). [CrossRef]
  5. Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003). [CrossRef]
  6. S. Noda, “Recent progresses and future prospects of two- and three-dimensional photonic crystals,” J. Lightwave Technol. 24, 4554–4567 (2006). [CrossRef]
  7. S. Noda, “Seeking the ultimate nanolaser,” Science 314, 260–261 (2006). [CrossRef]
  8. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946). [CrossRef]
  9. J. J. Coleman, J. D. Young, and A. Garg, “Semiconductor quantum dot lasers: a tutorial,” J. Lightwave Technol. 29, 499–510 (2011). [CrossRef]
  10. T. Yang, S. Lipson, J. D. O’Brien, and D. G. Deppe, “InAs quantum dot photonic crystal lasers and their temperature dependence,” IEEE Photon. Technol. Lett. 11, 2244–2246 (2005).
  11. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308–6315 (2006). [CrossRef]
  12. B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vuckovic, “Dynamics of QD photonic crystal lasers,” Appl. Phys. Lett. 90, 151102 (2007).
  13. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  14. A. S. Nagra and R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag. 46, 334–340 (1998). [CrossRef]
  15. S.-H. Chang and A. Taflove, “Finite-difference time-domain model of lasing action in a four-level two-electron atomic system,” Opt. Express 12, 3827–3833 (2004). [CrossRef]
  16. W. H. P. Pernice, F. P. Payne, and D. F. G. Gallagher, “A finite-difference time-domain method for the simulation of gain materials with carrier diffusion in photonic crystals,” J. Lightwave Technol. 25, 2306–2314 (2007). [CrossRef]
  17. Y. Zhang, W. Zheng, Q. Aiyi, H. Qu, H. Peng, S. Xie, and L. Chen, “Design of photonic crystal semiconductor optical amplifier with polarization independence,” J. Lightwave Technol. 22, 3207–3211 (2010).
  18. J. Schuster and R. Luebbers, “An accurate FDTD algorithm for dispersive media using a piecewise constant recursive convolution technique,” in IEEE Antennas And Propagation Society International Symposium (IEEE, 1998), pp. 2018–2021.
  19. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
  20. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1−xAs/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
  21. A. E. Siegman, Lasers (University Science, 1986).
  22. S. L. Chua, Y. Chong, A. D. Stone, M. Soljacic, and J. Bravo-Abad, “Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances,” Opt. Express 19, 1539–1562 (2011). [CrossRef]
  23. A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18, 10230–10239 (2010). [CrossRef]
  24. M. Sugawara, Self-Assembled InGaAs/GaAs Quantum Dots, M. Sugawara, ed., Vol. 60 of Semiconductors and Semimetals (Academic, 1999).
  25. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  26. H. Abbaspour, V. Ahmadi, and M. H. Yavari, “Analysis of QD VCSEL dynamic characteristics considering homogeneous and inhomogeneous broadening,” IEEE J. Sel. Top. Quantum Electron. 17, 1327–1333 (2011). [CrossRef]
  27. D. A. Neamen, Semiconductor Physics and Devices (McGraw-Hill, 2002).
  28. N. Tansu and L. J. Mawst, “Current injection efficiency of InGaAsN quantum-well lasers,” J. Appl. Phys. 97, 054502 (2005). [CrossRef]
  29. S. Shi and D. W. Prather, “Lasing dynamics of a silicon photonic crystal microcavity,” Opt. Express 15, 10294–10302 (2007). [CrossRef]
  30. G. Bjork, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A 50, 1675–1680 (1994). [CrossRef]
  31. M. H. Yavari and V. Ahmadi, “Effects of carrier relaxation and homogeneous broadening on dynamic and modulation behavior of self-assembled quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1153–1157 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited