OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 12 — Apr. 20, 2014
  • pp: 2616–2624

Design and fabrication of stress-compensated optical coatings: Fabry–Perot filters for astronomical applications

Marie-Maude de Denus-Baillargeon, Thomas Schmitt, Stéphane Larouche, and Ludvik Martinu  »View Author Affiliations


Applied Optics, Vol. 53, Issue 12, pp. 2616-2624 (2014)
http://dx.doi.org/10.1364/AO.53.002616


View Full Text Article

Enhanced HTML    Acrobat PDF (808 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of optical coatings may be negatively affected by the deleterious effects of mechanical stress. In this work, we propose an optimization tool for the design of optical filters taking into account both the optical and mechanical properties of the substrate and of the individual deposited layers. The proposed method has been implemented as a supplemental module in the OpenFilters open source design software. It has been experimentally validated by fabricating multilayer stacks using e-beam evaporation, in combination with their mechanical stress assessment performed as a function of temperature. Two different stress-compensation strategies were evaluated: (a) design of two complementary coatings on either side of the substrate and (b) implementing the mechanical properties of the individual materials in the design of the optical coating on one side only. This approach has been tested by the manufacture of a Fabry–Perot etalon used in astronomy while using evaporated SiO2 and TiO2 films. We found that the substrate curvature can be decreased by 85% and 49% for the first and second strategies, respectively.

© 2014 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(310.1620) Thin films : Interference coatings
(310.6870) Thin films : Thin films, other properties
(310.4165) Thin films : Multilayer design
(310.5696) Thin films : Refinement and synthesis methods

ToC Category:
Thin Films

History
Original Manuscript: January 9, 2014
Revised Manuscript: March 11, 2014
Manuscript Accepted: March 11, 2014
Published: April 15, 2014

Citation
Marie-Maude de Denus-Baillargeon, Thomas Schmitt, Stéphane Larouche, and Ludvik Martinu, "Design and fabrication of stress-compensated optical coatings: Fabry–Perot filters for astronomical applications," Appl. Opt. 53, 2616-2624 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-12-2616


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Zhang, J. W. Arkwright, and D. I. Farrant, “Distortion induced effects on the finesse of high-performance large-aperture Fabry–Perot etalon filters,” Opt. Express 14, 5994–6000 (2006). [CrossRef]
  2. H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34, 667–675 (1995). [CrossRef]
  3. F. Lemarquis, “Athermal compensation of the stress-induced surface deflection of optical coatings using iso-admittance layers,” Appl. Opt. 53, A229–A236 (2014). [CrossRef]
  4. J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20, 16595–16610 (2012).
  5. C. Fabry and A. Perot, “Measures of absolute wave-lengths in the solar spectrum and the spectrum of iron,” Astrophys. J. 7, 115–144 (1902).
  6. J. Bland-Hawthorn, “Tunable imaging filters and scientific applications,” in Imaging the Universe in Three Dimensions: Astrophysics with Advanced Multi-Wavelength Imaging Devices (Astronomical Society of the Pacific, 2000), pp. 34–57.
  7. Y. P. Georgelin and P. Amram, “A review of Fabry and Perot discoveries,” in 3D Optical Spectroscopic Methods in Astronomy, G. Compte and M. Marcelin, eds. (Astronomical Society of the Pacific, 1995), pp. 382–394.
  8. G. Hernandez, Fabry–Perot Interferometers (Cambridge University, 1986).
  9. R. Koch, “Stress in evaporated and sputtered thin films—a comparison,” Surf. Coat. Technol. 204, 1973–1982 (2010). [CrossRef]
  10. J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, “The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films,” J. Appl. Phys. 89, 4886–4897 (2001). [CrossRef]
  11. G. N. Strauss, “Mechanical stress in optical coatings,” in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer, 2003), pp. 207–229.
  12. R. Abermann, “Measurement of the intrinsic stress in thin metal films,” Vacuum 41, 1279–1282 (1990). [CrossRef]
  13. H. Windischmann, “Intrinsic stress in sputter deposited thin films,” Crit. Rev. Solid State Mater. Sci. 17, 547–596 (1992). [CrossRef]
  14. H. Windischmann, “An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering,” J. Appl. Phys. 62, 1800–1807 (1987). [CrossRef]
  15. W.-J. Liu, X.-J. Guo, and C.-H. Chien, “The study of optical and microstructural evolution of Ta2O5 and SiO2 thin films by plasma ion assisted deposition method,” Surf. Coat. Technol. 196, 69–75 (2005). [CrossRef]
  16. R. Koch, D. Hu, and A. K. Das, “Compressive stress in polycrystalline Volmer–Weber films,” Phys. Rev. Lett. 94, 146101 (2005). [CrossRef]
  17. J. Tello, A. F. Bower, E. Chason, and B. W. Sheldon, “Kinetic model of stress evolution during coalescence and growth of polycrystalline thin films,” Phys. Rev. Lett. 98, 216104 (2007). [CrossRef]
  18. S. Mahieu, P. Ghekiere, D. Depla, and R. De Gryse, “Biaxial alignment in sputter deposited thin films,” Thin Solid Films 515, 1229–1249 (2006). [CrossRef]
  19. J. E. Klemberg-Sapieha, J. Oberste-Berghaus, L. Martinu, R. Blacker, I. Stevenson, G. Sadkhin, D. Morton, S. McEldowney, R. Klinger, P. J. Martin, N. Court, S. Dligatch, M. Gross, and R. P. Netterfield, “Mechanical characteristics of optical coatings prepared by various techniques: a comparative study,” Appl. Opt. 43, 2670–2679 (2004). [CrossRef]
  20. B. A. Movchan and W. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Phys. Met. Metallogr. 28, 83–90 (1969).
  21. P. B. Barna and M. Adamik, “Growth mechanism of polycrystalline thin films,” in Science and Technology of Thin Films, F. C. Mattacotta and G. Ottaviani, eds. (World Scientific, 1995), Chap. 1, pp. 1–28.
  22. I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A 21, S117–S128 (2003). [CrossRef]
  23. K.-H. Müller, “Model for ion-assisted thin-film densification,” J. Appl. Phys. 59, 2803–2807 (1986). [CrossRef]
  24. D. W. Hoffman, “Modification of evaporated chromium by concurrent ion bombardment,” J. Vac. Sci. Technol. 17, 425–428 (1980). [CrossRef]
  25. G. Carter, “Peening in ion-assisted thin-film deposition: a generalized model,” J. Phys. D 27, 1046–1055 (1994). [CrossRef]
  26. D. M. Mattox, “Particle bombardment effects on thin-film deposition: a review,” J. Vac. Sci. Technol. A 7, 1105–1114 (1988). [CrossRef]
  27. G. G. Stoney, “Tension of electro-deposited films,” Proc. R. Soc. Lond. 82, 172–175 (1909). [CrossRef]
  28. S. Michel, “Vers une détermination optique directe des coefficients opto-mécaniques et thermo-optiques des couches minces optiques,” Ph.D. thesis (Université Paul-Cézanne Aix-Marseille, 2008).
  29. E. Çetinörgu, B. Baloukas, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Mechanical and thermoelastic characteristics of optical thin films deposited by dual ion beam sputtering,” Appl. Opt. 48, 4536–4544 (2009). [CrossRef]
  30. C. Mahodaux, H. Rigneault, H. Giovannini, L. Escoubas, and P. Moretti, “Mechanical properties of optical dielectric thin films deposited by the ion plating technique,” Microsc. Microanal. Microstruct. 8, 251–260 (1997). [CrossRef]
  31. C. Mahodaux, “Les contraintes dans les materiaux dielectriques en couche mince: empilements, evolution avec le recuit et l’implantation ionique,” Ph.D. thesis (Université Paul-Cézanne Aix-Marseille III, 1999).
  32. J. S. Kim, K. W. Paik, and S. H. Oh, “The multilayer-modified Stoney’s formula for laminated polymer composites on a silicon substrate,” J. Appl. Phys. 86, 5474–5479 (1999). [CrossRef]
  33. S. Larouche and L. Martinu, “OpenFilters: open source software for the design, optimization and synthesis of optical filters,” Appl. Opt. 47, C219–C230 (2008). [CrossRef]
  34. A. Tikhonravov, M. K. Trubetskov, and G. W. de Bell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996). [CrossRef]
  35. A. Tikhonravov, “A method of synthesis of optical coatings using optimality conditions,” Vestn. Mosk. Univ. Fiz. Astronomiya 23, 91–93 (1982).
  36. P. Baumeister, “Design of multilayer filters by successive approximations,” J. Opt. Soc. Am. 48, 955–958 (1958). [CrossRef]
  37. F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés. Applications aux couches minces,” Ann. Phys. 5, 596–640, 706–784 (1950).
  38. G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion-assisted deposition,” Thin Solid Films 342, 83–92 (1999). [CrossRef]
  39. S.-H. Woo, S.-H. Kim, and D. K. Hwangbo, “Optical and structural properties of TiO2 and MgF2 thin films by plasma ion-assisted deposition,” J. Korean Phys. Soc. 45, 99–107 (2004).
  40. K. K. Christova and A. H. Manov, “Mechanical stress and refractive index variation in dry SiO2,” Int. J. Electron. 76, 913–916 (1994). [CrossRef]
  41. M.-M. de Denus-Baillargeon, L. Abel-Tibérini, M. Lequime, C. Carignan, B. Épinat, J.-L. Gach, O. Hernandez, and M. Marcelin, “Developing high-performance reflective coatings for the tunable filter and the high-order interferometer of the 3D-NTT,” Proc. SPIE 7013, 70133N (2008). [CrossRef]
  42. M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008). [CrossRef]
  43. J.-W. Han, J.-M. Han, B.-Y. Kim, Y.-H. Kim, J.-H. Kim, D.-S. Seo, and Y.-P. Park, “Study on compensation of thermal stress in the fabrication process of thin-film transistor,” Jpn. J. Appl. Phys. 47, 2238–2240 (2008). [CrossRef]
  44. T. C. Begou, C. Hecquet, F. Lemarchand, and M. Lequime, “All dielectric broadband mirror for Fabry–Perot interferometer,” in Optical Interference Coatings Postdeadline, M. Tilsch and D. Ristau, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper PTE.6.
  45. L. I. Epstein, “Improvements in heat-reflecting filters,” J. Opt. Soc. Am. 45, 360–362 (1955). [CrossRef]
  46. A. F. Turner and P. W. Baumeister, “Multilayers mirrors with high reflectance over an extended spectral region,” Appl. Opt. 5, 69–76 (1966). [CrossRef]
  47. J. Mouchart, “Thin film optical coatings, 5: buffer layer theory,” Appl. Opt. 17, 72–75 (1978). [CrossRef]
  48. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. II. Experimental results—sputtering system,” Appl. Opt. 31, 3821–3835 (1992). [CrossRef]
  49. E. H. Hirsch, “Stress in porous thin films through adsorption of polar molecules,” J. Phys. D 13, 2081–2094 (1980). [CrossRef]
  50. H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited