OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 12 — Apr. 20, 2014
  • pp: 2625–2631

Spatiotemporal structure of a laser beam at a path length of 144  km: comparative analysis of spatial and temporal spectra

Alexandre S. Gurvich, Michael E. Gorbunov, Olga V. Fedorova, Marina I. Fortus, Gottfried Kirchengast, Veronika Proschek, and Keith A. Tereszchuk  »View Author Affiliations

Applied Optics, Vol. 53, Issue 12, pp. 2625-2631 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (517 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an analysis of spatial and temporal spectra of the observations of scintillations in a laser beam (532 nm, 200mW power) traveling along a 144 km path at an altitude of 2–2.4 km above sea level, just above the atmospheric boundary layer, between the islands of La Palma and Tenerife. The observations were performed during nighttime on July 18 and 21, 2011, by means of a telescope with an aperture diameter of 1 m. Strong scintillations were observed. We compared the temporal and spatial spectra of the scintillations. For the temporal spectra, we performed the correction for the aliasing effect due to the low frame rate. The 2D spatial spectra of the scintillations in the observation plane were found to be close to isotropic. This allowed for transforming them into 1D spectra. We found a good agreement between the temporal and 1D spatial spectra. This corroborates the applicability of the Taylor hypothesis of frozen turbulence for finite-size laser beams and strong scintillations.

© 2014 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: October 16, 2013
Revised Manuscript: March 11, 2014
Manuscript Accepted: March 18, 2014
Published: April 15, 2014

Alexandre S. Gurvich, Michael E. Gorbunov, Olga V. Fedorova, Marina I. Fortus, Gottfried Kirchengast, Veronika Proschek, and Keith A. Tereszchuk, "Spatiotemporal structure of a laser beam at a path length of 144  km: comparative analysis of spatial and temporal spectra," Appl. Opt. 53, 2625-2631 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. R. Ochs, R. R. Bergmtan, and J. R. Snyder, “Laser-beam scintillation over horizontal paths from 5.5 to 145 kilometers,” J. Opt. Soc. Am. 59, 231–234 (1969). [CrossRef]
  2. N. Perlot, D. Giggenbach, H. Henniger, J. Horwath, M. Knapek, and K. Zettl, “Measurements of the beam-wave fluctuations over a 142  km atmospheric path,” Proc. SPIE 6304, 63041O (2006). [CrossRef]
  3. M. A. Vorontsov, G. W. Carhart, V. S. Rao Gudimetla, T. Weyrauch, E. Stevenson, S. L. Lachinova, L. A. Beresnev, J. Liu, K. Rehder, and J. F. Riker, “Characterization of atmospheric turbulence effects over 149  km propagation path using multi-wavelength laser beacons,” in Proceedings of the 2010 AMOS Conference (2010), p. E18.
  4. A. S. Gurvich, M. E. Gorbunov, O. V. Fedorova, G. Kirchengast, V. Proschek, G. González Abad, and K. A. Tereszchuk, “Spatiotemporal structure of a laser beam over 144  km in a Canary Islands experiment,” Appl. Opt. 51, 7374–7383 (2012). [CrossRef]
  5. G. I. Taylor, “The spectrum of turbulence,” Proc. R. Soc. Lond. Ser. A 164, 476–490 (1938). [CrossRef]
  6. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter, 1971).
  7. J. S. A. Brooke, P. F. Bernath, G. Kirchengast, C. B. Thomas, J.-G. Wang, K. A. Tereszchuk, G. González Abad, R. J. Hargreaves, C. A. Beale, J. J. Harrison, S. Schweitzer, V. Proschek, P. A. Martin, V. L. Kasyutich, C. Gerbig, O. Kolle, and A. Loescher, “Greenhouse gas measurements over a 144  km open path in the Canary Islands,” Atmos. Meas. Tech. 5, 2309–2319 (2012).
  8. G. Kirchengast and S. Schweitzer, “Climate benchmark profiling of greenhouse gases and thermodynamic structure and wind from space,” Geophys. Res. Lett. 38, L13701 (2011). [CrossRef]
  9. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 2 (Dover Publications, 2007).
  10. G. V. Azizyan, A. S. Gurvich, and M. Z. Kholmyanskiy, “Influence of transport velocity variation on the cross spectra of the temperature fluctuations,” Izv. Acad. Sci., USSR, Atmos. Oceanic Phys. 16, 154–159 (1980).
  11. A. S. Gurvich, “Influence of the temporal evolution of turbulent inhomogeneities on frequency spectra,” Izv. Acad. Sci., USSR, Atmos. Oceanic Phys. 16, 231–237 (1980).
  12. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Elements of Random Fields, Vol. 3 of Principles of Statistical Radiophysics (Springer-Verlag, 1987).
  13. M. B. Priestley, Multivariate and Multidimensional Processes, Vol. 2 of Spectral Analysis and Time Series (Academic, 1981).
  14. A. M. Yaglom, Correlation Theory of Stationary and Related Random Functions (Springer-Verlag, 1987), Vols. 1 and 2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited