OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 12 — Apr. 20, 2014
  • pp: 2691–2695

Up-taper-based Mach–Zehnder interferometer for temperature and strain simultaneous measurement

Zexin Kang, Xiaodong Wen, Chao Li, Jiang Sun, Jing Wang, and Shuisheng Jian  »View Author Affiliations

Applied Optics, Vol. 53, Issue 12, pp. 2691-2695 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (480 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel all-fiber sensing configuration for simultaneous measurements of temperature and strain based on the up-taper Mach–Zehnder interferometer (MZI) with an in-line embedded fiber Bragg grating (FBG) is proposed and experimentally demonstrated. This configuration consists of two up-tapers fabricated by an excessive fusion splicing method and a short segment of inscribed FBG. Due to the different responses of the up-taper MZI and the FBG to the uniform variation of temperature and strain, the simultaneous measurement for these two variables could be achieved by real-time monitoring the transmission spectrum. For 0.01 nm wavelength resolution, a resolution of 0.311°C in temperature can be achieved, and the average strain resolution is 10.07 με.

© 2014 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 29, 2014
Revised Manuscript: March 17, 2014
Manuscript Accepted: March 19, 2014
Published: April 18, 2014

Zexin Kang, Xiaodong Wen, Chao Li, Jiang Sun, Jing Wang, and Shuisheng Jian, "Up-taper-based Mach–Zehnder interferometer for temperature and strain simultaneous measurement," Appl. Opt. 53, 2691-2695 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997). [CrossRef]
  2. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005). [CrossRef]
  3. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996). [CrossRef]
  4. V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4, 457–466 (1999). [CrossRef]
  5. K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18, 2239–2241 (2006). [CrossRef]
  6. Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008). [CrossRef]
  7. T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671 (2009). [CrossRef]
  8. J. P. Yang, L. Jiang, S. M. Wang, Q. H. Chen, B. Y. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photon. J. 3, 1189–1197 (2011). [CrossRef]
  9. Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode multimode single-mode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008). [CrossRef]
  10. B. B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. L. He, “Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer,” Opt. Express 17, 22296–22302 (2009). [CrossRef]
  11. B. B. Gu, W. Yuan, S. He, and O. Bang, “Temperature compensated strain sensor based on cascaded Sagnac interferometers and all-solid birefringent hybrid photonic crystal fibers,” IEEE Sens. J. 12, 1641–1646 (2012). [CrossRef]
  12. D. Wu, T. Zhu, K. S. Chiang, and M. Deng, “All single-mode fiber Mach–Zehnder interferometer based on two peanut-shape structures,” J. Lightwave Technol. 30, 805–810 (2012). [CrossRef]
  13. T. Qi, S. L. Xiao, J. Shi, L. L. Yi, Z. Zhao, M. H. Bi, and W. S. Hu, “Cladding-mode backward recoupling based displacement sensor incorporating fiber up taper and Bragg grating,” IEEE Photon. J. 5, 7100608 (2013). [CrossRef]
  14. B. B. Gu, W. L. Qi, J. Zheng, Y. Y. Zhou, P. P. Shum, and F. Luan, “Simple and compact reflective refractometer based on tilted fiber Bragg grating inscribed in thin-core fiber,” Opt. Lett. 39, 22–25 (2014). [CrossRef]
  15. W. J. Zhou, Y. Zhou, X. Y. Dong, L. Y. Shao, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode Bragg grating excited by fiber multimode interferometer,” IEEE Photon. J. 4, 1051–1057 (2012). [CrossRef]
  16. X. D. Wen, T. G. Ning, H. D. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photon. Technol. Lett. 25, 1839–1842 (2013). [CrossRef]
  17. D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47, 1668–1672 (2008). [CrossRef]
  18. Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, F. Xu, and B. Yu, “A compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13, 1447–1451 (2013). [CrossRef]
  19. B. Dong, J. Z. Hao, C. Y. Liaw, B. Lin, and S. C. Tjin, “Simultaneous strain and temperature measurement using a compact photonic crystal fiber inter-modal interferometer and a fiber Bragg grating,” Appl. Opt. 49, 6232–6235 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited