OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 12 — Apr. 20, 2014
  • pp: 2730–2740

One-mirror and two-mirror three-dimensional optical scanners—position and accuracy of laser beam spot

Petr Pokorny  »View Author Affiliations

Applied Optics, Vol. 53, Issue 12, pp. 2730-2740 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1622 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This article presents several fundamental formulas for ray tracing in optical systems used in 3D optical scanners. A procedure for numerical modeling of one-mirror and two-mirror optical systems is presented, and the calculation of positioning and accuracy of the laser beam spot in a detection plane is carried out. Finally, a point position and accuracy depending on a transit time is evaluated.

© 2014 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(110.0110) Imaging systems : Imaging systems
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(220.0220) Optical design and fabrication : Optical design and fabrication
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Remote Sensing and Sensors

Original Manuscript: February 6, 2014
Revised Manuscript: March 21, 2014
Manuscript Accepted: March 21, 2014
Published: April 18, 2014

Petr Pokorny, "One-mirror and two-mirror three-dimensional optical scanners—position and accuracy of laser beam spot," Appl. Opt. 53, 2730-2740 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. F. Marshall and G. E. Stutz, Handbook of Optical and Laser Scanning, Vol. 147 (CRC, 2011).
  2. G. Vosselman and H.-G. Maas, Airborne and Terrestrial Laser Scanning (Whittles, 2010).
  3. “Control System—Laser Scanning—Surveying Works,” 2013, http://www.controlsystem.cz/en .
  4. “Surphaser 3D Scanners,” 2013, http://www.surphaser.com .
  5. “Leica Geosystems—HDS,” 2013, http://hds.leica-geosystems.com/en/index.htm .
  6. “TOPCON Global Gateway,” 2013, http://global.topcon.com .
  7. “RIEGL Laser Measurement Systems,” 2013, http://www.riegl.com .
  8. “FARO Laser Scanner Focus3D,” 2013, http://www.faro.com/focus/uk .
  9. “MDL,” 2013, http://www.mdl.co.uk/en/14735.aspx .
  10. “Galvos—Scanning Mirrors—Optical Scanners,” 2013, http://www.cambridgetechnology.com .
  11. “Laser Sensors—IR Temperature Sensors—High Precision Displacement, and Position Measurement—Micro-Epsilon Measurement,” 2013, http://www.micro-epsilon.com/index.html .
  12. R. J. Pegis and M. Rao, “Analysis and design of plane-mirror systems,” Appl. Opt. 2, 1271–1274 (1963). [CrossRef]
  13. J. Cohen-Sabban, Y. Cohen-Sabban, and A. Roussel, “Distortion-free 2-D space and surface scanners using light deflectors,” Appl. Opt. 22, 3935–3942 (1983). [CrossRef]
  14. Y. J. Li and J. Katz, “Laser beam scanning by rotary mirrors. I. Modeling mirror-scanning devices,” Appl. Opt. 34, 6403–6416 (1995). [CrossRef]
  15. Y. J. Li, “Laser beam scanning by rotary mirrors. II. Conic-section scan patterns,” Appl. Opt. 34, 6417–6430 (1995). [CrossRef]
  16. Y. J. Li, “Single-mirror beam steering system: analysis and synthesis of high-order conic-section scan patterns,” Appl. Opt. 47, 386–398 (2008). [CrossRef]
  17. Y. J. Li, “Beam deflection and scanning by two-mirror and two-axis systems of different architectures: a unified approach,” Appl. Opt. 47, 5976–5985 (2008). [CrossRef]
  18. Y. Friedman and N. Schweitzer, “Classification of stable configurations of plane mirrors,” Appl. Opt. 37, 7229–7234 (1998). [CrossRef]
  19. R. Shinozaki, O. Sasaki, and T. Suzuki, “Fast scanning method for one-dimensional surface profile measurement by detecting angular deflection of a laser beam,” Appl. Opt. 43, 4157–4163 (2004). [CrossRef]
  20. P. Pokorny, “Theoretical foundations of one-mirror and two-mirror optical scanners,” bachelor’s thesis (Czech Technical University in Prague, Faculty of Civil Engineering, Prague, 2012).
  21. A. Miks, Applied Optics (Czech Technical University, 2009), p. 230.
  22. M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  23. A. Miks, Physics 2: Electromagnetic Field (Czech Technical University, 2005), p. 162.
  24. A. Yariv, Quantum Electronics (Wiley, 1967).
  25. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).
  26. J. A. Stratton, Electromagnetic Theory (Adams, 2008).
  27. A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics, 4th ed. (Cambridge University, 2010), p. 572.
  28. F. Trager, Springer Handbook of Lasers and Optics (Springer, 2007).
  29. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (Dover, 2000).
  30. E. Madelung, Die mathematischen Hilfsmittel des Physikers (Springer-Verlag, 1964).
  31. K. Rektorys, Survey of Applicable Mathematics (SNTL, 1969).
  32. K.-R. Koch, Parameter Estimation and Hypothesis Testing in Linear Models (Springer, 1999).
  33. L. Mervart and Z. Lukes, Adjustment Calculus (Czech Technical University, 2007).
  34. S. V. Gupta, Measurement Uncertainties: Physical Parameters and Calibration of Instruments (Springer-Verlag, 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited